Preliminary Investigation of Neural Network Techniques to Predict Tribological Properties

摩擦学 人工神经网络 过程(计算) 实验数据 实验设计 田口方法 机械系统 计算机科学 机械工程 工程类 机器学习 数学 统计 操作系统
作者
Steven P. Jones,Ralph Jansen,Robert L. Fusaro
出处
期刊:Tribology Transactions 卷期号:40 (2): 312-320 被引量:88
标识
DOI:10.1080/10402009708983660
摘要

A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems-sensitive. As a result, experimental designs, i.e., Latin Square and Taguchi, have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心擎呢发布了新的文献求助10
1秒前
2秒前
小彭仔完成签到,获得积分10
2秒前
罗咩咩发布了新的文献求助10
4秒前
丘比特应助ninomi采纳,获得10
4秒前
4秒前
蓝天应助聪慧的醉波采纳,获得10
4秒前
5秒前
彭于晏应助霸气的柠檬采纳,获得10
6秒前
大模型应助吴龙采纳,获得10
6秒前
茶米发布了新的文献求助10
7秒前
7秒前
单薄的西装完成签到,获得积分10
8秒前
NexusExplorer应助Wjp采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
shadow完成签到,获得积分10
9秒前
balalal发布了新的文献求助10
9秒前
CodeCraft应助sghsh采纳,获得10
10秒前
CodeCraft应助zd200572采纳,获得10
10秒前
Hello应助Dylan采纳,获得10
10秒前
珊明治完成签到,获得积分10
11秒前
12秒前
ak24765完成签到,获得积分10
12秒前
Lucas应助帝释天I采纳,获得10
13秒前
Linden发布了新的文献求助10
13秒前
14秒前
传奇3应助ling22采纳,获得10
14秒前
风衣拖地完成签到 ,获得积分10
14秒前
冰红粥完成签到,获得积分10
14秒前
14秒前
852应助曾经山柏采纳,获得10
15秒前
可爱的函函应助杜晓倩采纳,获得10
15秒前
所所应助黎其采纳,获得10
15秒前
18秒前
VV2001完成签到,获得积分10
18秒前
18秒前
MDX发布了新的文献求助10
20秒前
张11关注了科研通微信公众号
20秒前
哭泣的涵柳完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133