化学
电极
连接器
生物芯片
共价键
杂交探针
工作电极
组合化学
电化学
分析化学(期刊)
纳米技术
DNA
色谱法
有机化学
材料科学
操作系统
生物化学
物理化学
计算机科学
作者
Christophe A. Marquette,M. F. Lawrence,L.J. Blum
摘要
A new electrochemical biochip for the detection of DNA sequences was developed. The entire biochip-i.e., working, reference, and counter electrodes-was constructed based on the screen-printing technique and exhibits eight working electrodes that could be individually addressed and grafted through a simple electrochemical procedure. Screen-printed electrode networks were functionalized electrochemically with 1-ethyl-3-(3dimethylaminopropyl)carbodidiimide according to a simple procedure. Single-stranded DNA with a C6-NH(2) linker at the 5'-end was then covalently bound to the surface to act as probe for the direct, nonlabeled, detection of complementary strands in a conductive liquid medium. In the present system, the study was focused on a particular codon (273) localized in the exon 8 of the p53 gene (20 mer, TTGAGGTGCATGTTTGTGCC). The integrity of the immobilized probes and its ability to capture target sequences was monitored through chemiluminescent detection following the hybridization of a peroxidase-labeled target. The grafting of the probe at the electrode surface was shown to generate significant shifts of the Nyquist curves measured in the 10-kHz to 80-Hz range. These variations of the faradaic impedance were found to be related to changes of the double layer capacitance of the electrochemical system's equivalent circuit. Similarly, hybridization of complementary strands was monitored through the measurements of these shifts, which enabled the detection of target sequences from 1 to 200 nM. Discrimination between complementary, noncomplementary, and single-nucleotide mismatch targets was easily accomplished.
科研通智能强力驱动
Strongly Powered by AbleSci AI