A prediction model for length of stay after total and unicompartmental knee replacement

四分位间距 医学 列线图 膝关节置换术 物理疗法 回顾性队列研究 外科 布里氏评分 关节置换术 内科学 统计 数学
作者
Peck-Hoon Ong,Yong‐Hao Pua
出处
期刊:The bone & joint journal [British Editorial Society of Bone and Joint Surgery]
卷期号:95-B (11): 1490-1496 被引量:59
标识
DOI:10.1302/0301-620x.95b11.31193
摘要

Early and accurate prediction of hospital length-of-stay (LOS) in patients undergoing knee replacement is important for economic and operational reasons. Few studies have systematically developed a multivariable model to predict LOS. We performed a retrospective cohort study of 1609 patients aged ≥ 50 years who underwent elective, primary total or unicompartmental knee replacements. Pre-operative candidate predictors included patient demographics, knee function, self-reported measures, surgical factors and discharge plans. In order to develop the model, multivariable regression with bootstrap internal validation was used. The median LOS for the sample was four days (interquartile range 4 to 5). Statistically significant predictors of longer stay included older age, greater number of comorbidities, less knee flexion range of movement, frequent feelings of being down and depressed, greater walking aid support required, total (versus unicompartmental) knee replacement, bilateral surgery, low-volume surgeon, absence of carer at home, and expectation to receive step-down care. For ease of use, these ten variables were used to construct a nomogram-based prediction model which showed adequate predictive accuracy (optimism-corrected R(2) = 0.32) and calibration. If externally validated, a prediction model using easily and routinely obtained pre-operative measures may be used to predict absolute LOS in patients following knee replacement and help to better manage these patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
arui完成签到,获得积分20
1秒前
ddttdt发布了新的文献求助10
1秒前
1秒前
1秒前
香蕉觅云应助顺顺利利采纳,获得10
2秒前
2秒前
独特傲丝发布了新的文献求助10
3秒前
科研通AI2S应助明亮的冰颜采纳,获得10
4秒前
wanci应助须尽欢采纳,获得10
5秒前
年轻的凤发布了新的文献求助10
5秒前
整齐凌萱发布了新的文献求助10
6秒前
科研通AI2S应助天玄采纳,获得10
7秒前
7秒前
华仔应助科研通管家采纳,获得30
7秒前
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
田様应助壮观静柏采纳,获得10
9秒前
9秒前
10秒前
10秒前
打打应助monair采纳,获得10
10秒前
无住生心完成签到,获得积分10
10秒前
11秒前
丘比特应助彩色惜文采纳,获得10
11秒前
13秒前
wanidamm完成签到,获得积分10
14秒前
16秒前
16秒前
17秒前
科研通AI2S应助名金学南采纳,获得10
17秒前
19秒前
清风完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138888
求助须知:如何正确求助?哪些是违规求助? 2789815
关于积分的说明 7792820
捐赠科研通 2446185
什么是DOI,文献DOI怎么找? 1300930
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079