亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information

计算机科学 基因 基因表达 计算生物学 人工智能 推论 表达式(计算机科学)
作者
Xiujun Zhang,Xing-Ming Zhao,Kun He,Le Lu,Yongwei Cao,Jingdong Liu,Jin-Kao Hao,Zhi-Ping Liu,Luonan Chen
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:28 (1): 98-104 被引量:225
标识
DOI:10.1093/bioinformatics/btr626
摘要

Motivation: Reconstruction of gene regulatory networks (GRNs), which explicitly represent the causality of developmental or regulatory process, is of utmost interest and has become a challenging computational problem for understanding the complex regulatory mechanisms in cellular systems. However, all existing methods of inferring GRNs from gene expression profiles have their strengths and weaknesses. In particular, many properties of GRNs, such as topology sparseness and non-linear dependence, are generally in regulation mechanism but seldom are taken into account simultaneously in one computational method. Results: In this work, we present a novel method for inferring GRNs from gene expression data considering the non-linear dependence and topological structure of GRNs by employing path consistency algorithm (PCA) based on conditional mutual information (CMI). In this algorithm, the conditional dependence between a pair of genes is represented by the CMI between them. With the general hypothesis of Gaussian distribution underlying gene expression data, CMI between a pair of genes is computed by a concise formula involving the covariance matrices of the related gene expression profiles. The method is validated on the benchmark GRNs from the DREAM challenge and the widely used SOS DNA repair network in Escherichia coli. The cross-validation results confirmed the effectiveness of our method (PCA-CMI), which outperforms significantly other previous methods. Besides its high accuracy, our method is able to distinguish direct (or causal) interactions from indirect associations. Availability: All the source data and code are available at: http://csb.shu.edu.cn/subweb/grn.htm. Contact:[email protected]; [email protected] Supplementary information:Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青岚完成签到 ,获得积分10
1秒前
4秒前
Mipe完成签到,获得积分10
5秒前
隐形曼青应助慈祥的盼波采纳,获得10
9秒前
啊啊啊发布了新的文献求助10
10秒前
28秒前
baronge发布了新的文献求助10
34秒前
xx完成签到 ,获得积分10
39秒前
Artorias完成签到,获得积分10
44秒前
45秒前
FashionBoy应助Artorias采纳,获得10
48秒前
NexusExplorer应助尺素寸心采纳,获得10
51秒前
脑洞疼应助科研通管家采纳,获得10
58秒前
zhongu应助科研通管家采纳,获得10
58秒前
华仔应助科研通管家采纳,获得10
58秒前
隐形曼青应助科研通管家采纳,获得10
58秒前
Jasper应助科研通管家采纳,获得10
59秒前
59秒前
1分钟前
1分钟前
小情绪完成签到 ,获得积分10
1分钟前
啊啊啊发布了新的文献求助10
1分钟前
尺素寸心发布了新的文献求助10
1分钟前
尺素寸心完成签到,获得积分10
1分钟前
招水若离完成签到,获得积分10
1分钟前
易达发布了新的文献求助10
1分钟前
nnnick完成签到,获得积分0
1分钟前
chenwei完成签到,获得积分10
1分钟前
爆米花应助DRYAN采纳,获得20
1分钟前
科研通AI5应助......采纳,获得10
1分钟前
zhl完成签到,获得积分10
1分钟前
2分钟前
xiuxiuzhang完成签到 ,获得积分10
2分钟前
DRYAN发布了新的文献求助20
2分钟前
晓书完成签到 ,获得积分10
2分钟前
kmario完成签到,获得积分10
2分钟前
DRYAN完成签到,获得积分10
2分钟前
2分钟前
2分钟前
DRYAN发布了新的文献求助10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516310
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9240017
捐赠科研通 2793665
什么是DOI,文献DOI怎么找? 1533155
邀请新用户注册赠送积分活动 712597
科研通“疑难数据库(出版商)”最低求助积分说明 707384