Amyloid fibrils and silk fibroin (SF) fibrils are proteinaceous aggregates occurring either naturally or as artificially reconstituted fibrous systems, in which the constituent β-strands are aligned either orthogonally or parallel to the fibril main axis, conferring complementary physical properties. Here, it is shown how the combination of these two classes of protein fibrils with orthogonally oriented β-strands results in composite materials with controllable physical properties at the molecular, mesoscopic, and continuum length scales. As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.