Attentional biases in dysphoria: An eye-tracking study of the allocation and disengagement of attention

烦躁 脱离理论 心理学 注意偏差 认知心理学 固定(群体遗传学) 心情 焦虑 发展心理学 临床心理学 精神科 老年学 医学 人口 人口学 社会学
作者
Christopher R. Sears,Charmaine L. Thomas,Jessica M. LeHuquet,Jeremy C. S. Johnson
出处
期刊:Cognition & Emotion [Informa]
卷期号:24 (8): 1349-1368 被引量:78
标识
DOI:10.1080/02699930903399319
摘要

This study looked for evidence of biases in the allocation and disengagement of attention in dysphoric individuals. Participants studied images for a recognition memory test while their eye fixations were tracked and recorded. Four image types were presented (depression-related, anxiety-related, positive, neutral) in each of two study conditions. For the simultaneous study condition, four images (one of each type) were presented simultaneously for 10 seconds, and the number of fixations and the total fixation time to each image was measured, similar to the procedure used by Eizenman et al. (2003) and Kellough, Beevers, Ellis, and Wells (2008). For the sequential study condition, four images (one of each type) were presented consecutively, each for 4 seconds; to measure disengagement of attention an endogenous cuing procedure was used (Posner, 1980). Dysphoric individuals spent significantly less time attending to positive images than non-dysphoric individuals, but there were no group differences in attention to depression-related images. There was also no evidence of a dysphoria-related bias in initial shifts of attention. With respect to the disengagement of attention, dysphoric individuals were slower to disengage their attention from depression-related images. The recognition memory data showed that dysphoric individuals had poorer memory for emotional images, but there was no evidence of a conventional mood-congruent memory bias. Differences in the attentional and memory biases observed in depressed and dysphoric individuals are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助R66采纳,获得10
刚刚
fff发布了新的文献求助10
刚刚
1秒前
大卫发布了新的文献求助10
1秒前
东方发布了新的文献求助10
1秒前
1秒前
1秒前
FashionBoy应助落羽采纳,获得10
2秒前
FashionBoy应助大喜喜采纳,获得10
2秒前
2秒前
不安青牛应助boltos采纳,获得10
2秒前
pophoo发布了新的文献求助10
3秒前
舒心的晟睿完成签到,获得积分10
3秒前
4秒前
复杂的芒果完成签到,获得积分20
4秒前
帆天际发布了新的文献求助30
5秒前
含蓄的小熊猫应助NMZN采纳,获得10
7秒前
7秒前
陈小白发布了新的文献求助10
8秒前
SciGPT应助吴彦祖采纳,获得10
8秒前
Echopotter完成签到,获得积分10
8秒前
zdy完成签到,获得积分10
10秒前
11秒前
出过门发布了新的文献求助30
11秒前
jjamazing发布了新的文献求助10
13秒前
天天快乐应助哈人的猫采纳,获得10
13秒前
Hwenjing发布了新的文献求助10
14秒前
15秒前
的订单发布了新的文献求助10
15秒前
搜集达人应助FartKing采纳,获得10
16秒前
东方完成签到,获得积分10
16秒前
WUHUIWEN完成签到,获得积分10
16秒前
CipherSage应助甜甜的梦菡采纳,获得10
17秒前
科研通AI5应助炙热的雪糕采纳,获得10
17秒前
汉堡包应助水杯不离手采纳,获得10
17秒前
小董完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
大方的访波完成签到 ,获得积分10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490736
求助须知:如何正确求助?哪些是违规求助? 3077538
关于积分的说明 9149233
捐赠科研通 2769733
什么是DOI,文献DOI怎么找? 1519934
邀请新用户注册赠送积分活动 704390
科研通“疑难数据库(出版商)”最低求助积分说明 702148