Object-based crop identification using multiple vegetation indices, textural features and crop phenology

遥感 混淆矩阵 植被(病理学) 专题地图 像素 环境科学 鉴定(生物学) 精准农业 先进星载热发射反射辐射计 计算机科学 农业 地图学 地理 人工智能 数字高程模型 生态学 生物 医学 病理 考古
作者
J. M. Peña-Barragán,Moffatt K. Ngugi,Richard E. Plant,Johan Six
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:115 (6): 1301-1316 被引量:507
标识
DOI:10.1016/j.rse.2011.01.009
摘要

Crop identification on specific parcels and the assessment of soil management practices are important for agro-ecological studies, greenhouse gas modeling, and agrarian policy development. Traditional pixel-based analysis of remotely sensed data results in inaccurate identification of some crops due to pixel heterogeneity, mixed pixels, spectral similarity, and crop pattern variability. These problems can be overcome using object-based image analysis (OBIA) techniques, which incorporate new spectral, textural and hierarchical features after segmentation of imagery. We combined OBIA and decision tree (DT) algorithms to develop a methodology, named Object-based Crop Identification and Mapping (OCIM), for a multi-seasonal assessment of a large number of crop types and field status. In our approach, we explored several vegetation indices (VIs) and textural features derived from visible, near-infrared and short-wave infrared (SWIR) bands of ASTER satellite scenes collected during three distinct growing-season periods (mid-spring, early-summer and late-summer). OCIM was developed for 13 major crops cultivated in the agricultural area of Yolo County in California, USA. The model design was built in four different scenarios (combinations of three or two periods) by using two independent training and validation datasets and the best DTs resulted in an error rate of 9% for the three-period model and between 12 and 16% for the two-period models. Next, the selected DT was used for the thematic classification of the entire cropland area and mapping was then evaluated applying the confusion matrix method to the independent testing dataset that reported 79% overall accuracy. OCIM detected intra-class variations in most crops attributed to variability from local crop calendars, tree-orchard structures and land management operations. Spectral variables (based on VIs) contributed around 90% to the models, although textural variables were necessary to discriminate between most of the permanent crop-fields (orchards, vineyard, alfalfa and meadow). Features extracted from late-summer imagery contributed around 60% in classification model development, whereas mid-spring and early-summer imagery contributed around 30 and 10%, respectively. The Normalized Difference Vegetation Index (NDVI) was used to identify the main groups of crops based on the presence and vigor of green vegetation within the fields, contributing around 50% to the models. In addition, other VIs based on SWIR bands were also crucial to crop identification because of their potential to detect field properties like moisture, vegetation vigor, non-photosynthetic vegetation and bare soil. The OCIM method was built using interpretable rules based on physical properties of the crops studied and it was successful for object-based feature selection and crop identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多多完成签到,获得积分20
5秒前
5秒前
共享精神应助研友_ngJRqL采纳,获得10
5秒前
打打应助路宝采纳,获得10
6秒前
情怀应助科研靓仔采纳,获得10
6秒前
April完成签到 ,获得积分10
7秒前
可爱的函函应助玻璃杯采纳,获得10
8秒前
FashionBoy应助Emmmm采纳,获得10
9秒前
14秒前
14秒前
Elvira完成签到,获得积分10
15秒前
情怀应助谁动了我钱包采纳,获得30
15秒前
16秒前
高兴紫寒发布了新的文献求助10
16秒前
rubia发布了新的文献求助60
16秒前
wang发布了新的文献求助10
17秒前
打打应助dafa采纳,获得30
17秒前
17秒前
lyy发布了新的文献求助20
17秒前
猪猪hero应助又来注水了采纳,获得10
18秒前
执着乐双发布了新的文献求助10
19秒前
19秒前
顾矜应助frunk采纳,获得30
19秒前
Leofar发布了新的文献求助10
20秒前
俊俊完成签到 ,获得积分0
21秒前
23秒前
hbb完成签到,获得积分10
23秒前
24秒前
24秒前
24秒前
msuyue完成签到,获得积分10
24秒前
24秒前
Jasper应助Jon采纳,获得10
25秒前
25秒前
26秒前
俭朴的玉兰完成签到 ,获得积分10
27秒前
321发布了新的文献求助10
29秒前
luqqq发布了新的文献求助10
29秒前
现实的白开水完成签到,获得积分10
31秒前
英俊的铭应助科研通管家采纳,获得10
32秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412827
求助须知:如何正确求助?哪些是违规求助? 3015387
关于积分的说明 8870075
捐赠科研通 2703099
什么是DOI,文献DOI怎么找? 1482060
科研通“疑难数据库(出版商)”最低求助积分说明 685108
邀请新用户注册赠送积分活动 679798