MSA-Regularized Protein Sequence Transformer toward Predicting Genome-Wide Chemical-Protein Interactions: Application to GPCRome Deorphanization

可解释性 蛋白质测序 计算生物学 人工智能 计算机科学 蛋白质功能预测 机器学习 序列学习 序列(生物学) 生物 肽序列 基因 蛋白质功能 遗传学
作者
Tian Cai,Hansaim Lim,Kyra Alyssa Abbu,Yue Qiu,Ruth Nussinov,Lei Xie
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:61 (4): 1570-1582 被引量:7
标识
DOI:10.1021/acs.jcim.0c01285
摘要

Small molecules play a critical role in modulating biological systems. Knowledge of chemical–protein interactions helps address fundamental and practical questions in biology and medicine. However, with the rapid emergence of newly sequenced genes, the endogenous or surrogate ligands of a vast number of proteins remain unknown. Homology modeling and machine learning are two major methods for assigning new ligands to a protein but mostly fail when sequence homology between an unannotated protein and those with known functions or structures is low. In this study, we develop a new deep learning framework to predict chemical binding to evolutionary divergent unannotated proteins, whose ligand cannot be reliably predicted by existing methods. By incorporating evolutionary information into self-supervised learning of unlabeled protein sequences, we develop a novel method, distilled sequence alignment embedding (DISAE), for the protein sequence representation. DISAE can utilize all protein sequences and their multiple sequence alignment (MSA) to capture functional relationships between proteins without the knowledge of their structure and function. Followed by the DISAE pretraining, we devise a module-based fine-tuning strategy for the supervised learning of chemical–protein interactions. In the benchmark studies, DISAE significantly improves the generalizability of machine learning models and outperforms the state-of-the-art methods by a large margin. Comprehensive ablation studies suggest that the use of MSA, sequence distillation, and triplet pretraining critically contributes to the success of DISAE. The interpretability analysis of DISAE suggests that it learns biologically meaningful information. We further use DISAE to assign ligands to human orphan G-protein coupled receptors (GPCRs) and to cluster the human GPCRome by integrating their phylogenetic and ligand relationships. The promising results of DISAE open an avenue for exploring the chemical landscape of entire sequenced genomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yzyue发布了新的文献求助10
刚刚
勿扰完成签到 ,获得积分10
刚刚
Kedr完成签到,获得积分10
刚刚
刚刚
dh发布了新的文献求助10
1秒前
茹茹发布了新的文献求助10
1秒前
共享精神应助牛顿格拉斯采纳,获得10
1秒前
1秒前
2秒前
踏实的魔镜完成签到,获得积分10
4秒前
4秒前
4秒前
核桃发布了新的文献求助10
4秒前
xyy完成签到 ,获得积分20
4秒前
wangshibing发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
李健应助shuyingRen采纳,获得10
5秒前
hhh发布了新的文献求助10
6秒前
友好惜儿发布了新的文献求助10
6秒前
HLQF完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
千寒完成签到,获得积分10
7秒前
7秒前
李悟尔发布了新的文献求助10
7秒前
mzmz发布了新的文献求助10
7秒前
蘑菇完成签到,获得积分10
8秒前
8秒前
wjw完成签到,获得积分10
8秒前
不太想学习完成签到 ,获得积分10
9秒前
科研通AI6应助风中绿蝶采纳,获得10
9秒前
9秒前
10秒前
Destiny完成签到,获得积分10
11秒前
自觉的安双完成签到,获得积分10
11秒前
RTena.完成签到,获得积分10
11秒前
11秒前
小二郎应助喜悦的难摧采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082