MSA-Regularized Protein Sequence Transformer toward Predicting Genome-Wide Chemical-Protein Interactions: Application to GPCRome Deorphanization

可解释性 蛋白质测序 计算生物学 人工智能 计算机科学 蛋白质功能预测 机器学习 序列学习 序列(生物学) 生物 肽序列 基因 蛋白质功能 遗传学
作者
Tian Cai,Hansaim Lim,Kyra Alyssa Abbu,Yue Qiu,Ruth Nussinov,Lei Xie
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:61 (4): 1570-1582 被引量:7
标识
DOI:10.1021/acs.jcim.0c01285
摘要

Small molecules play a critical role in modulating biological systems. Knowledge of chemical–protein interactions helps address fundamental and practical questions in biology and medicine. However, with the rapid emergence of newly sequenced genes, the endogenous or surrogate ligands of a vast number of proteins remain unknown. Homology modeling and machine learning are two major methods for assigning new ligands to a protein but mostly fail when sequence homology between an unannotated protein and those with known functions or structures is low. In this study, we develop a new deep learning framework to predict chemical binding to evolutionary divergent unannotated proteins, whose ligand cannot be reliably predicted by existing methods. By incorporating evolutionary information into self-supervised learning of unlabeled protein sequences, we develop a novel method, distilled sequence alignment embedding (DISAE), for the protein sequence representation. DISAE can utilize all protein sequences and their multiple sequence alignment (MSA) to capture functional relationships between proteins without the knowledge of their structure and function. Followed by the DISAE pretraining, we devise a module-based fine-tuning strategy for the supervised learning of chemical–protein interactions. In the benchmark studies, DISAE significantly improves the generalizability of machine learning models and outperforms the state-of-the-art methods by a large margin. Comprehensive ablation studies suggest that the use of MSA, sequence distillation, and triplet pretraining critically contributes to the success of DISAE. The interpretability analysis of DISAE suggests that it learns biologically meaningful information. We further use DISAE to assign ligands to human orphan G-protein coupled receptors (GPCRs) and to cluster the human GPCRome by integrating their phylogenetic and ligand relationships. The promising results of DISAE open an avenue for exploring the chemical landscape of entire sequenced genomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI5应助勤奋的雪曼采纳,获得10
1秒前
cw关闭了cw文献求助
1秒前
1秒前
2秒前
高尚完成签到,获得积分10
2秒前
seesun发布了新的文献求助10
2秒前
3秒前
莫相逢完成签到,获得积分10
3秒前
leaolf应助cff采纳,获得10
4秒前
4秒前
赘婿应助青花采纳,获得10
5秒前
复杂函完成签到,获得积分10
5秒前
zhangxueqing完成签到,获得积分10
5秒前
陈小虎发布了新的文献求助10
5秒前
木木完成签到,获得积分10
6秒前
虚心惜筠完成签到,获得积分10
6秒前
微笑亿先发布了新的文献求助10
6秒前
嘻嘻嘻发布了新的文献求助30
7秒前
黎落发布了新的文献求助20
8秒前
小研发布了新的文献求助10
8秒前
9秒前
MNing发布了新的文献求助10
9秒前
HAHAHAPPY关注了科研通微信公众号
9秒前
9秒前
REN发布了新的文献求助10
10秒前
10秒前
可爱的函函应助聪明蛋采纳,获得10
10秒前
小蘑菇应助柚子采纳,获得10
10秒前
10秒前
柠萌完成签到,获得积分10
11秒前
li发布了新的文献求助10
12秒前
陈BB发布了新的文献求助10
13秒前
柴犬发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
14秒前
无花果应助风荷旧梦采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343