已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MSA-Regularized Protein Sequence Transformer toward Predicting Genome-Wide Chemical-Protein Interactions: Application to GPCRome Deorphanization

可解释性 蛋白质测序 计算生物学 人工智能 计算机科学 蛋白质功能预测 机器学习 序列学习 序列(生物学) 生物 肽序列 基因 蛋白质功能 遗传学
作者
Tian Cai,Hansaim Lim,Kyra Alyssa Abbu,Yue Qiu,Ruth Nussinov,Lei Xie
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:61 (4): 1570-1582 被引量:7
标识
DOI:10.1021/acs.jcim.0c01285
摘要

Small molecules play a critical role in modulating biological systems. Knowledge of chemical–protein interactions helps address fundamental and practical questions in biology and medicine. However, with the rapid emergence of newly sequenced genes, the endogenous or surrogate ligands of a vast number of proteins remain unknown. Homology modeling and machine learning are two major methods for assigning new ligands to a protein but mostly fail when sequence homology between an unannotated protein and those with known functions or structures is low. In this study, we develop a new deep learning framework to predict chemical binding to evolutionary divergent unannotated proteins, whose ligand cannot be reliably predicted by existing methods. By incorporating evolutionary information into self-supervised learning of unlabeled protein sequences, we develop a novel method, distilled sequence alignment embedding (DISAE), for the protein sequence representation. DISAE can utilize all protein sequences and their multiple sequence alignment (MSA) to capture functional relationships between proteins without the knowledge of their structure and function. Followed by the DISAE pretraining, we devise a module-based fine-tuning strategy for the supervised learning of chemical–protein interactions. In the benchmark studies, DISAE significantly improves the generalizability of machine learning models and outperforms the state-of-the-art methods by a large margin. Comprehensive ablation studies suggest that the use of MSA, sequence distillation, and triplet pretraining critically contributes to the success of DISAE. The interpretability analysis of DISAE suggests that it learns biologically meaningful information. We further use DISAE to assign ligands to human orphan G-protein coupled receptors (GPCRs) and to cluster the human GPCRome by integrating their phylogenetic and ligand relationships. The promising results of DISAE open an avenue for exploring the chemical landscape of entire sequenced genomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倾卿如玉完成签到 ,获得积分10
刚刚
dajiejie发布了新的文献求助10
1秒前
微笑的手机完成签到 ,获得积分10
2秒前
zzn关闭了zzn文献求助
4秒前
樱木灰完成签到,获得积分10
4秒前
刘辰完成签到 ,获得积分10
4秒前
4秒前
RMY完成签到 ,获得积分10
4秒前
Bin_Liu发布了新的文献求助10
4秒前
成就的笑南完成签到 ,获得积分10
5秒前
莫力布林完成签到 ,获得积分10
6秒前
嗯很好完成签到,获得积分20
6秒前
7秒前
Deerqueen发布了新的文献求助10
7秒前
FashionBoy应助ChenYX采纳,获得10
8秒前
杨天祺完成签到 ,获得积分10
8秒前
,。完成签到,获得积分10
9秒前
震千筹完成签到 ,获得积分10
9秒前
欣欣子完成签到 ,获得积分10
10秒前
嗯很好发布了新的文献求助10
10秒前
yt发布了新的文献求助10
10秒前
pinklay完成签到 ,获得积分10
10秒前
韩祖完成签到 ,获得积分10
11秒前
zhs发布了新的文献求助10
11秒前
啷个吃不饱完成签到 ,获得积分10
12秒前
阔达静曼完成签到 ,获得积分10
13秒前
芒芒发paper完成签到 ,获得积分10
16秒前
爱听歌的悒完成签到 ,获得积分10
16秒前
cjg完成签到,获得积分10
18秒前
20秒前
Jing完成签到 ,获得积分10
20秒前
hayek完成签到,获得积分10
20秒前
Akim应助嗯很好采纳,获得10
20秒前
别当真完成签到 ,获得积分10
21秒前
徐双依大帅比完成签到,获得积分10
21秒前
文艺沉鱼完成签到 ,获得积分10
21秒前
junkook完成签到 ,获得积分10
22秒前
Fn完成签到 ,获得积分10
22秒前
贪玩的尔蝶完成签到,获得积分20
24秒前
早晚会疯完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290747
求助须知:如何正确求助?哪些是违规求助? 4442048
关于积分的说明 13829071
捐赠科研通 4324837
什么是DOI,文献DOI怎么找? 2373882
邀请新用户注册赠送积分活动 1369248
关于科研通互助平台的介绍 1333323

今日热心研友

eric888
3 100
tuanheqi
80
Criminology34
50
哈基米德
40
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10