已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Hybrid Evolutionary Algorithm Using Two Solution Representations for Hybrid Flow-Shop Scheduling Problem

解码方法 流水车间调度 禁忌搜索 计算机科学 作业车间调度 数学优化 调度(生产过程) 启发式 编码(内存) 水准点(测量) 进化算法 算法 地铁列车时刻表 人工智能 数学 大地测量学 地理 操作系统
作者
Jiaxin Fan,Yingli Li,Jin Xie,Chunjiang Zhang,Weiming Shen,Liang Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (3): 1752-1764 被引量:64
标识
DOI:10.1109/tcyb.2021.3120875
摘要

As an extension of the classical flow-shop scheduling problem, the hybrid flow-shop scheduling problem (HFSP) widely exists in large-scale industrial production systems and has been considered to be challenging for its complexity and flexibility. Evolutionary algorithms based on encoding and heuristic decoding approaches are shown effective in solving the HFSP. However, frequently used encoding and decoding strategies can only search a limited area of the solution space, thus leading to unsatisfactory performance during the later period. In this article, a hybrid evolutionary algorithm (HEA) using two solution representations is proposed to solve the HFSP for makespan minimization. First, the proposed HEA searches the solution space by a permutation-based encoding representation and two heuristic decoding methods to find some promising areas. Afterward, a Tabu search (TS) procedure based on a disjunctive graph representation is introduced to expand the searching space for further optimization. Two classical neighborhood structures focusing on critical paths are extended to the problem-specific backward schedules to generate candidate solutions for the TS. The proposed HEA is tested on three public HFSP benchmark sets from the existing literature, including 567 instances in total, and is compared with some state-of-the-art algorithms. Extensive experimental results indicate that the proposed HEA performs much better than the other algorithms. Moreover, the proposed method finds new best solutions for 285 hard instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vicky完成签到 ,获得积分10
刚刚
还是你天天完成签到 ,获得积分10
刚刚
HMG1COA完成签到 ,获得积分10
1秒前
Akim应助健康的半仙采纳,获得10
2秒前
隐形曼青应助健康的半仙采纳,获得10
2秒前
搜集达人应助健康的半仙采纳,获得10
2秒前
深情安青应助健康的半仙采纳,获得10
2秒前
2秒前
Jasper应助健康的半仙采纳,获得10
2秒前
bkagyin应助健康的半仙采纳,获得10
2秒前
李健应助健康的半仙采纳,获得10
3秒前
科目三应助健康的半仙采纳,获得10
3秒前
汉堡包应助健康的半仙采纳,获得10
3秒前
SGOM完成签到 ,获得积分10
5秒前
赘婿应助哈哈哈采纳,获得10
6秒前
高熵合金发布了新的文献求助10
6秒前
9秒前
9秒前
李爱国应助健康的半仙采纳,获得10
9秒前
充电宝应助健康的半仙采纳,获得10
9秒前
酷波er应助健康的半仙采纳,获得10
9秒前
乐乐应助健康的半仙采纳,获得10
9秒前
科研通AI2S应助健康的半仙采纳,获得10
9秒前
星辰大海应助健康的半仙采纳,获得10
9秒前
共享精神应助健康的半仙采纳,获得10
9秒前
田様应助健康的半仙采纳,获得10
9秒前
领导范儿应助健康的半仙采纳,获得10
9秒前
坚强的灯泡完成签到,获得积分10
12秒前
14秒前
16秒前
18秒前
18秒前
乌冬面123发布了新的文献求助30
21秒前
fsznc完成签到 ,获得积分0
22秒前
玛卡巴卡完成签到 ,获得积分10
24秒前
LucienS发布了新的文献求助10
25秒前
今后应助prrrratt采纳,获得10
27秒前
燚槿完成签到 ,获得积分10
29秒前
田様应助笨笨桐采纳,获得10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590129
求助须知:如何正确求助?哪些是违规求助? 4674579
关于积分的说明 14794548
捐赠科研通 4630299
什么是DOI,文献DOI怎么找? 2532556
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571