A reliable estimation method for mining lithium-ion battery

卡尔曼滤波器 电池(电) 计算机科学 荷电状态 噪音(视频) 可靠性(半导体) 控制理论(社会学) 功率(物理) 扩展卡尔曼滤波器 人工智能 量子力学 图像(数学) 物理 控制(管理)
作者
Kai-Feng Huang,Juqiang Feng,Zegong Liu,Long Jun Wu,Xing Zhang
出处
期刊:Journal of Computational Methods in Sciences and Engineering [IOS Press]
卷期号:: 1-15
标识
DOI:10.3233/jcm-215587
摘要

Power battery SOC (state of charge, SOC) is one of the important decision-making factors of energy management. Accurate estimation plays an important role in optimizing vehicle energy management and improving the utilization of power battery energy. The key to accurate estimation of SOC is to determine circuit model parameters and estimation methods. The research object of this article is lithium manganese oxide battery for mining (LiMn2O4). The experiments of multiplying power, temperature and HPPC (hybrid pulse power characteristic, HPPC) are carried out. A self-tuning calculation method of dynamic system is proposed, and the dynamic self-tuning model based on second-order RC is established. At the same time, in view of the shortcoming that the UKF (Unscented Kalman Filter, UKF) algorithm cannot estimate the noise in real time, In order to improve the accuracy of battery SOC estimation, an adaptive square root unscented Kalman filter (ASR-UKF) algorithm is proposed, which can make the noise statistical characteristics follow the estimation results for adaptive adjustment. Finally, the constant current and dynamic conditions are tested. The results show that the maximum change rate of model parameters with magnification is 76%, and the maximum change rate with temperature is 73.7%. The analysis of dynamic characteristics is a key factor to improve the accuracy of SOC estimation; ASR-UKF Compared with the UKF algorithm, the error is reduced by 78% under constant current conditions and 85.7% under dynamic conditions. The reliability and real-time performance of the algorithm can be obtained by comparing the simulation data with the actual data. The conclusions of this paper can be used as a theoretical basis, which can be used for model analysis of lithium batteries for mining and estimation of internal state variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
YJS关闭了YJS文献求助
1秒前
ding应助syrrr要发文章采纳,获得10
2秒前
baochao完成签到 ,获得积分10
2秒前
是然发布了新的文献求助10
2秒前
科研通AI5应助方星采纳,获得10
2秒前
2秒前
2秒前
柳白发布了新的文献求助10
2秒前
永不阴性发布了新的文献求助10
3秒前
李凤凤发布了新的文献求助30
3秒前
mikefei完成签到,获得积分10
3秒前
科研通AI5应助流萤采纳,获得10
4秒前
5秒前
在水一方应助tch采纳,获得10
6秒前
6秒前
fuyuhaoy完成签到,获得积分10
7秒前
你好包包发布了新的文献求助10
7秒前
7秒前
汉堡包应助晶莹黎采纳,获得10
7秒前
哦哦哦发布了新的文献求助10
7秒前
Yyy完成签到,获得积分10
8秒前
柳白完成签到,获得积分10
8秒前
脑洞疼应助结实的保温杯采纳,获得10
8秒前
闪闪的夏之完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
和谐笙完成签到,获得积分10
9秒前
yyyyzhu应助2032jia采纳,获得10
9秒前
NexusExplorer应助李傲采纳,获得10
10秒前
开朗寻凝完成签到,获得积分10
10秒前
理躺丁真完成签到,获得积分10
10秒前
10秒前
晶晶完成签到,获得积分10
10秒前
劲秉应助谢珊采纳,获得20
10秒前
量子星尘发布了新的文献求助10
11秒前
万能图书馆应助挽风采纳,获得10
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663432
求助须知:如何正确求助?哪些是违规求助? 3223996
关于积分的说明 9754408
捐赠科研通 2933862
什么是DOI,文献DOI怎么找? 1606458
邀请新用户注册赠送积分活动 758497
科研通“疑难数据库(出版商)”最低求助积分说明 734836