Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes

化学 催化作用 纳米颗粒 铂纳米粒子 铂金 纳米技术 Atom(片上系统) 金属 人工酶 化学工程 组合化学 有机化学 材料科学 计算机科学 工程类 嵌入式系统
作者
Yuanjun Chen,Peixia Wang,Haigang Hao,Juanji Hong,Haijing Li,Shufang Ji,Ang Li,Rui Gao,Juncai Dong,Xiaodong Han,Minmin Liang,Dingsheng Wang,Yadong Li
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (44): 18643-18651 被引量:294
标识
DOI:10.1021/jacs.1c08581
摘要

Although great progress has been made in artificial enzyme engineering, their catalytic performance is far from satisfactory as alternatives of natural enzymes. Here, we report a novel and efficient strategy to access high-performance nanozymes via direct atomization of platinum nanoparticles (Pt NPs) into single atoms by reversing the thermal sintering process. Atomization of Pt NPs into single atoms makes metal catalytic sites fully exposed and results in engineerable structural and electronic properties, thereby leading to dramatically enhanced enzymatic performance. As expected, the as-prepared thermally stable Pt single-atom nanozyme (PtTS-SAzyme) exhibited remarkable peroxidase-like catalytic activity and kinetics, far exceeding the Pt nanoparticle nanozyme. The following density functional theory calculations revealed that the engineered P and S atoms not only promote the atomization process from Pt NPs into PtTS-SAzyme but also endow single-atom Pt catalytic sites with a unique electronic structure owing to the electron donation of P atoms, as well as the electron acceptance of N and S atoms, which simultaneously contribute to the substantial enhancement of the enzyme-like catalytic performance of PtTS-SAzyme. This work demonstrates that thermal atomization of the metal nanoparticle-based nanozymes into single-atom nanozymes is an effective strategy for engineering high-performance nanozymes, which opens up a new way to rationally design and optimize artificial enzymes to mimic natural enzymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助YW采纳,获得10
2秒前
2秒前
bkagyin应助难过千易采纳,获得10
2秒前
火锅冒菜我的爱完成签到 ,获得积分10
3秒前
3秒前
Akim应助哈哈哈哈哈哈采纳,获得10
3秒前
4秒前
5秒前
5秒前
shiyi应助俊逸的康乃馨采纳,获得10
5秒前
小刘完成签到 ,获得积分10
6秒前
李健的小迷弟应助刘仁轨采纳,获得10
6秒前
twinkle完成签到,获得积分10
7秒前
多情的裘完成签到 ,获得积分10
8秒前
阿双关注了科研通微信公众号
8秒前
8秒前
9秒前
10秒前
10秒前
完美世界应助王露阳采纳,获得10
10秒前
Hello应助Shellbeaze采纳,获得10
10秒前
hyy完成签到,获得积分10
11秒前
庞鲂应助随遇而安采纳,获得50
13秒前
酷波er应助墨客采纳,获得10
13秒前
13秒前
13秒前
13秒前
潘嫄发布了新的文献求助10
14秒前
14秒前
14秒前
YW发布了新的文献求助10
15秒前
Yelicious发布了新的文献求助10
15秒前
wxy发布了新的文献求助10
15秒前
开心的松思完成签到,获得积分10
15秒前
fj发布了新的文献求助10
16秒前
18秒前
悦耳冰蓝完成签到,获得积分10
18秒前
英俊的铭应助费凝海采纳,获得10
19秒前
19秒前
韩立完成签到,获得积分10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298