Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes

化学 催化作用 纳米颗粒 铂纳米粒子 铂金 纳米技术 Atom(片上系统) 金属 人工酶 化学工程 组合化学 有机化学 材料科学 计算机科学 工程类 嵌入式系统
作者
Yuanjun Chen,Peixia Wang,Haigang Hao,Juanji Hong,Haijing Li,Shufang Ji,Ang Li,Rui Gao,Juncai Dong,Xiaodong Han,Minmin Liang,Dingsheng Wang,Yadong Li
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (44): 18643-18651 被引量:322
标识
DOI:10.1021/jacs.1c08581
摘要

Although great progress has been made in artificial enzyme engineering, their catalytic performance is far from satisfactory as alternatives of natural enzymes. Here, we report a novel and efficient strategy to access high-performance nanozymes via direct atomization of platinum nanoparticles (Pt NPs) into single atoms by reversing the thermal sintering process. Atomization of Pt NPs into single atoms makes metal catalytic sites fully exposed and results in engineerable structural and electronic properties, thereby leading to dramatically enhanced enzymatic performance. As expected, the as-prepared thermally stable Pt single-atom nanozyme (PtTS-SAzyme) exhibited remarkable peroxidase-like catalytic activity and kinetics, far exceeding the Pt nanoparticle nanozyme. The following density functional theory calculations revealed that the engineered P and S atoms not only promote the atomization process from Pt NPs into PtTS-SAzyme but also endow single-atom Pt catalytic sites with a unique electronic structure owing to the electron donation of P atoms, as well as the electron acceptance of N and S atoms, which simultaneously contribute to the substantial enhancement of the enzyme-like catalytic performance of PtTS-SAzyme. This work demonstrates that thermal atomization of the metal nanoparticle-based nanozymes into single-atom nanozymes is an effective strategy for engineering high-performance nanozymes, which opens up a new way to rationally design and optimize artificial enzymes to mimic natural enzymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Walden发布了新的文献求助10
1秒前
浮游应助啊飞啊飞啊飞采纳,获得10
2秒前
3秒前
zjrh发布了新的文献求助10
3秒前
郝富完成签到,获得积分10
4秒前
ericzhouxx完成签到,获得积分10
4秒前
doctor小陈完成签到,获得积分10
5秒前
倩倩发布了新的文献求助10
7秒前
受伤鸡发布了新的文献求助10
8秒前
坚果完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
jesmblaq发布了新的文献求助10
9秒前
AAngelica完成签到,获得积分10
9秒前
ElviraHuang完成签到 ,获得积分10
11秒前
11秒前
李昕123发布了新的文献求助10
13秒前
13秒前
14秒前
Canyon完成签到,获得积分10
15秒前
刘l完成签到,获得积分10
15秒前
9699完成签到,获得积分20
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
破碎时间完成签到 ,获得积分10
17秒前
17秒前
17秒前
orixero应助忐忑的不可采纳,获得10
18秒前
科研通AI2S应助zhouyan采纳,获得10
18秒前
19秒前
蔡勇强发布了新的文献求助10
19秒前
小虫虫完成签到,获得积分10
19秒前
饼饼大王完成签到,获得积分10
19秒前
13013523252完成签到,获得积分10
19秒前
21秒前
hy发布了新的文献求助10
21秒前
科研通AI6应助tph采纳,获得10
22秒前
jesmblaq完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812