Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes

化学 催化作用 纳米颗粒 铂纳米粒子 铂金 纳米技术 Atom(片上系统) 金属 人工酶 化学工程 组合化学 有机化学 材料科学 计算机科学 工程类 嵌入式系统
作者
Yuanjun Chen,Peixia Wang,Haigang Hao,Juanji Hong,Haijing Li,Shufang Ji,Ang Li,Rui Gao,Juncai Dong,Xiaodong Han,Minmin Liang,Dingsheng Wang,Yadong Li
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (44): 18643-18651 被引量:233
标识
DOI:10.1021/jacs.1c08581
摘要

Although great progress has been made in artificial enzyme engineering, their catalytic performance is far from satisfactory as alternatives of natural enzymes. Here, we report a novel and efficient strategy to access high-performance nanozymes via direct atomization of platinum nanoparticles (Pt NPs) into single atoms by reversing the thermal sintering process. Atomization of Pt NPs into single atoms makes metal catalytic sites fully exposed and results in engineerable structural and electronic properties, thereby leading to dramatically enhanced enzymatic performance. As expected, the as-prepared thermally stable Pt single-atom nanozyme (PtTS-SAzyme) exhibited remarkable peroxidase-like catalytic activity and kinetics, far exceeding the Pt nanoparticle nanozyme. The following density functional theory calculations revealed that the engineered P and S atoms not only promote the atomization process from Pt NPs into PtTS-SAzyme but also endow single-atom Pt catalytic sites with a unique electronic structure owing to the electron donation of P atoms, as well as the electron acceptance of N and S atoms, which simultaneously contribute to the substantial enhancement of the enzyme-like catalytic performance of PtTS-SAzyme. This work demonstrates that thermal atomization of the metal nanoparticle-based nanozymes into single-atom nanozymes is an effective strategy for engineering high-performance nanozymes, which opens up a new way to rationally design and optimize artificial enzymes to mimic natural enzymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ming完成签到,获得积分10
刚刚
1秒前
1秒前
3秒前
4秒前
evilhag发布了新的文献求助10
4秒前
搞怪烨伟发布了新的文献求助10
4秒前
月光颂博客完成签到 ,获得积分10
5秒前
cz完成签到,获得积分10
5秒前
酷波er应助Metakuro采纳,获得10
6秒前
荔枝完成签到,获得积分10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
一石二鸟应助科研通管家采纳,获得10
6秒前
自信的子默完成签到,获得积分20
6秒前
打打应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
卓博完成签到,获得积分10
6秒前
华仔应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
朴实天寿应助科研通管家采纳,获得20
7秒前
过时的朝雪完成签到,获得积分20
7秒前
7秒前
雷雷发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
9秒前
10秒前
10秒前
VD完成签到,获得积分10
11秒前
Lily发布了新的文献求助10
11秒前
吴兰田完成签到,获得积分10
12秒前
DIY101完成签到,获得积分10
12秒前
12秒前
12秒前
竹子完成签到,获得积分10
12秒前
雪白起眸发布了新的文献求助10
13秒前
13秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137988
求助须知:如何正确求助?哪些是违规求助? 2788970
关于积分的说明 7789245
捐赠科研通 2445350
什么是DOI,文献DOI怎么找? 1300312
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046