Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes

化学 催化作用 纳米颗粒 铂纳米粒子 铂金 纳米技术 Atom(片上系统) 金属 人工酶 化学工程 组合化学 有机化学 材料科学 计算机科学 工程类 嵌入式系统
作者
Yuanjun Chen,Peixia Wang,Haigang Hao,Juanji Hong,Haijing Li,Shufang Ji,Ang Li,Rui Gao,Juncai Dong,Xiaodong Han,Minmin Liang,Dingsheng Wang,Yadong Li
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (44): 18643-18651 被引量:294
标识
DOI:10.1021/jacs.1c08581
摘要

Although great progress has been made in artificial enzyme engineering, their catalytic performance is far from satisfactory as alternatives of natural enzymes. Here, we report a novel and efficient strategy to access high-performance nanozymes via direct atomization of platinum nanoparticles (Pt NPs) into single atoms by reversing the thermal sintering process. Atomization of Pt NPs into single atoms makes metal catalytic sites fully exposed and results in engineerable structural and electronic properties, thereby leading to dramatically enhanced enzymatic performance. As expected, the as-prepared thermally stable Pt single-atom nanozyme (PtTS-SAzyme) exhibited remarkable peroxidase-like catalytic activity and kinetics, far exceeding the Pt nanoparticle nanozyme. The following density functional theory calculations revealed that the engineered P and S atoms not only promote the atomization process from Pt NPs into PtTS-SAzyme but also endow single-atom Pt catalytic sites with a unique electronic structure owing to the electron donation of P atoms, as well as the electron acceptance of N and S atoms, which simultaneously contribute to the substantial enhancement of the enzyme-like catalytic performance of PtTS-SAzyme. This work demonstrates that thermal atomization of the metal nanoparticle-based nanozymes into single-atom nanozymes is an effective strategy for engineering high-performance nanozymes, which opens up a new way to rationally design and optimize artificial enzymes to mimic natural enzymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maizhan完成签到,获得积分10
刚刚
默认用户名完成签到,获得积分10
1秒前
2秒前
leei完成签到,获得积分10
3秒前
meng123发布了新的文献求助10
3秒前
小马甲应助c123采纳,获得10
4秒前
莎莎士比亚完成签到,获得积分10
6秒前
LOST完成签到 ,获得积分10
6秒前
7秒前
袁凯文发布了新的文献求助10
7秒前
共享精神应助老菜鸟321采纳,获得10
7秒前
WUWEI发布了新的文献求助10
8秒前
xiaoW完成签到,获得积分10
8秒前
10秒前
牛太虚完成签到,获得积分10
10秒前
SciGPT应助科多兽骑士采纳,获得10
10秒前
12秒前
gjm完成签到,获得积分10
12秒前
SciGPT应助zj采纳,获得10
13秒前
Ava应助阿湫采纳,获得10
13秒前
meng123完成签到,获得积分20
14秒前
x5kyi完成签到,获得积分10
15秒前
爆米花应助肖遥采纳,获得10
16秒前
Xx完成签到,获得积分10
16秒前
16秒前
19秒前
烟里戏完成签到 ,获得积分10
21秒前
shuangfeng1853完成签到 ,获得积分10
21秒前
林子青发布了新的文献求助10
21秒前
22秒前
aa完成签到,获得积分10
22秒前
CXC完成签到,获得积分10
22秒前
24秒前
Zzz发布了新的文献求助10
24秒前
上官若男应助袁凯文采纳,获得10
25秒前
25秒前
褚晣完成签到,获得积分10
25秒前
ATTENTION完成签到,获得积分10
26秒前
26秒前
周欣玙完成签到,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048