Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes

化学 催化作用 纳米颗粒 铂纳米粒子 铂金 纳米技术 Atom(片上系统) 金属 人工酶 化学工程 组合化学 有机化学 材料科学 计算机科学 工程类 嵌入式系统
作者
Yuanjun Chen,Peixia Wang,Haigang Hao,Juanji Hong,Haijing Li,Shufang Ji,Ang Li,Rui Gao,Juncai Dong,Xiaodong Han,Minmin Liang,Dingsheng Wang,Yadong Li
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (44): 18643-18651 被引量:275
标识
DOI:10.1021/jacs.1c08581
摘要

Although great progress has been made in artificial enzyme engineering, their catalytic performance is far from satisfactory as alternatives of natural enzymes. Here, we report a novel and efficient strategy to access high-performance nanozymes via direct atomization of platinum nanoparticles (Pt NPs) into single atoms by reversing the thermal sintering process. Atomization of Pt NPs into single atoms makes metal catalytic sites fully exposed and results in engineerable structural and electronic properties, thereby leading to dramatically enhanced enzymatic performance. As expected, the as-prepared thermally stable Pt single-atom nanozyme (PtTS-SAzyme) exhibited remarkable peroxidase-like catalytic activity and kinetics, far exceeding the Pt nanoparticle nanozyme. The following density functional theory calculations revealed that the engineered P and S atoms not only promote the atomization process from Pt NPs into PtTS-SAzyme but also endow single-atom Pt catalytic sites with a unique electronic structure owing to the electron donation of P atoms, as well as the electron acceptance of N and S atoms, which simultaneously contribute to the substantial enhancement of the enzyme-like catalytic performance of PtTS-SAzyme. This work demonstrates that thermal atomization of the metal nanoparticle-based nanozymes into single-atom nanozymes is an effective strategy for engineering high-performance nanozymes, which opens up a new way to rationally design and optimize artificial enzymes to mimic natural enzymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星空完成签到,获得积分10
刚刚
恒牙完成签到 ,获得积分10
刚刚
岁岁完成签到,获得积分10
1秒前
1秒前
鱼雷完成签到,获得积分10
1秒前
熙梓日记完成签到,获得积分10
2秒前
qiwei完成签到 ,获得积分10
3秒前
大红马完成签到,获得积分20
3秒前
3秒前
4秒前
呵呵呵呵发布了新的文献求助10
4秒前
每个人都完成签到,获得积分10
4秒前
梅子黄时雨完成签到,获得积分10
5秒前
小点点cy_发布了新的文献求助10
5秒前
活泼秋玲完成签到,获得积分10
6秒前
如意的问枫完成签到 ,获得积分10
7秒前
ziptip发布了新的文献求助10
8秒前
9秒前
南风北至完成签到,获得积分10
9秒前
man完成签到 ,获得积分10
9秒前
呵呵呵呵完成签到,获得积分10
10秒前
11秒前
深情安青应助明亮的卿采纳,获得30
14秒前
14秒前
羊洋洋完成签到,获得积分10
14秒前
叶子完成签到,获得积分10
14秒前
Hammerdai完成签到,获得积分10
15秒前
稻蜗发布了新的文献求助10
17秒前
正在获取昵称中...完成签到,获得积分10
17秒前
Hancock完成签到 ,获得积分10
18秒前
19秒前
qiwei发布了新的文献求助10
21秒前
21秒前
geold完成签到,获得积分10
22秒前
刻苦的元风完成签到,获得积分10
22秒前
gUssan完成签到,获得积分10
24秒前
震动的小草完成签到,获得积分10
26秒前
明亮的卿发布了新的文献求助30
26秒前
吉以寒完成签到,获得积分10
29秒前
31秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709365
求助须知:如何正确求助?哪些是违规求助? 3257426
关于积分的说明 9905005
捐赠科研通 2970326
什么是DOI,文献DOI怎么找? 1629167
邀请新用户注册赠送积分活动 772475
科研通“疑难数据库(出版商)”最低求助积分说明 743850