化学
阳离子聚合
体内分布
纳米颗粒
纳米医学
生物物理学
高分子
组合化学
生物化学
纳米技术
有机化学
材料科学
生物
体外
作者
Xingliang Liu,Huiyi Liang,Yanzi Yan,Jingjiao Wu,Massimo Bottini,Lixin Liu,Yongming Chen
标识
DOI:10.1016/j.bioactmat.2021.10.044
摘要
A central paradigm in nanomedicine is that when synthetic nanoparticles (NPs) enter the body, they are immediately cloaked by a corona of macromolecules (mostly proteins) that mediates the role of the physico-chemical properties in the NP biological functions (the "coronation paradigm"). In this work, we focused on the assessment of the "coronation paradigm" for cationic NPs (cNPs) used as rheumatoid arthritis (RA) drugs due to their ability to scavenge cell-free DNA (cfDNA). We fabricated series of cNPs uniformly coated with single or di-hydroxyl groups and different types of amino groups and showed that hydroxylated nanoparticles displayed a prolonged retention in inflamed joints and greater anti-inflammatory effect in collagen-induced arthritis (CIA) rats than the non-hydroxylated analogues. Especially, the cNPs with secondary amines and a di-hydroxyl shell showed the best performance among the tested cNPs. Proteomic analysis showed that the cNPs with a di-hydroxyl shell adsorbed less opsonin proteins than the cNPs carrying mono hydroxyl groups and non-hydroxylated ones, which may provide a mechanistic explanation for the different biodistribution profiles of cNPs. Thus, this study suggests that the protein corona mediates the effects of the surface chemistry on the fate and functions of cNPs as anti-RA drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI