Improved Hybrid Bag-Boost Ensemble With K-Means-SMOTE–ENN Technique for Handling Noisy Class Imbalanced Data

过采样 欠采样 重采样 计算机科学 噪音(视频) 人工智能 模式识别(心理学) 聚类分析 班级(哲学) 数据挖掘 机器学习 二进制数 数学 计算机网络 算术 带宽(计算) 图像(数学)
作者
Arjun Puri,Manoj Gupta
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:65 (1): 124-138 被引量:43
标识
DOI:10.1093/comjnl/bxab039
摘要

Abstract A class imbalance problem plays a vital role while dealing with classes with rare number of instances. Noisy class imbalanced datasets create considerable effect on the machine learning classification of classes. Data resampling techniques commonly used for handling class imbalance problem show insignificant behavior in noisy imbalanced datasets. To cure curse of data resampling technique in noisy class imbalanced data, we have proposed improved hybrid bag-boost with proposed resampling technique model. This model contains proposed resampling technique used for handling noisy imbalanced datasets. Proposed resampling technique comprises K-Means SMOTE (Synthetic Minority Oversampling TEchnique) as an oversampling technique and edited nearest neighbor (ENN) undersampling technique used as noise removal. This resampling technique is used to mitigate noise in imbalanced datasets at three levels, i.e. first clusters datasets using K-Means clustering technique, SMOTE inside clusters for handling imbalance by inducing synthetic instances of class in minority and lastly, using ENN technique to remove instances that create noise afterwards. Experiments were performed using 11 binary imbalanced datasets by varying attribute noise percentages, and by using area under receiver operating curve as performance metrics. Experimental results confirmed that proposed model shows better results than the rest. Moreover, it is also confirmed that proposed technique performs better with an increased noise percentage in binary imbalanced datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殷晓阳发布了新的文献求助10
刚刚
小余完成签到,获得积分20
刚刚
跳跃仙人掌发布了新的文献求助100
刚刚
Starset应助欣喜紫真采纳,获得20
刚刚
evergarden完成签到,获得积分10
1秒前
所所应助帅气的冬菱采纳,获得10
2秒前
小二郎应助火星上的中恶采纳,获得80
2秒前
研友_VZG7GZ应助yehuaiyu采纳,获得10
2秒前
2秒前
2秒前
宠仙发布了新的文献求助10
3秒前
yyyfff应助ke2w1n12138采纳,获得10
3秒前
ljh1771发布了新的文献求助30
3秒前
Enckson完成签到,获得积分10
3秒前
3秒前
CodeCraft应助123采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
Harden发布了新的文献求助20
4秒前
4秒前
两米发布了新的文献求助10
4秒前
华仔应助若雨沫采纳,获得30
4秒前
华仔应助lys采纳,获得10
6秒前
热情灵珊完成签到,获得积分10
6秒前
6秒前
深情安青应助嘉梦采纳,获得30
7秒前
大个应助木尧采纳,获得10
7秒前
老黑发布了新的文献求助10
7秒前
落叶完成签到 ,获得积分10
9秒前
HC完成签到 ,获得积分10
9秒前
9秒前
9秒前
333水完成签到,获得积分10
9秒前
Lucas应助琪哒采纳,获得10
10秒前
无情听南完成签到,获得积分10
11秒前
12秒前
zhang发布了新的文献求助10
12秒前
13秒前
空空完成签到 ,获得积分10
13秒前
lys完成签到,获得积分20
13秒前
迷人成协发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599540
求助须知:如何正确求助?哪些是违规求助? 4010119
关于积分的说明 12414946
捐赠科研通 3689740
什么是DOI,文献DOI怎么找? 2034025
邀请新用户注册赠送积分活动 1067273
科研通“疑难数据库(出版商)”最低求助积分说明 952284