Improved Hybrid Bag-Boost Ensemble With K-Means-SMOTE–ENN Technique for Handling Noisy Class Imbalanced Data

过采样 欠采样 重采样 计算机科学 噪音(视频) 人工智能 模式识别(心理学) 聚类分析 班级(哲学) 数据挖掘 机器学习 二进制数 数学 计算机网络 算术 带宽(计算) 图像(数学)
作者
Arjun Puri,Manoj Gupta
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:65 (1): 124-138 被引量:43
标识
DOI:10.1093/comjnl/bxab039
摘要

Abstract A class imbalance problem plays a vital role while dealing with classes with rare number of instances. Noisy class imbalanced datasets create considerable effect on the machine learning classification of classes. Data resampling techniques commonly used for handling class imbalance problem show insignificant behavior in noisy imbalanced datasets. To cure curse of data resampling technique in noisy class imbalanced data, we have proposed improved hybrid bag-boost with proposed resampling technique model. This model contains proposed resampling technique used for handling noisy imbalanced datasets. Proposed resampling technique comprises K-Means SMOTE (Synthetic Minority Oversampling TEchnique) as an oversampling technique and edited nearest neighbor (ENN) undersampling technique used as noise removal. This resampling technique is used to mitigate noise in imbalanced datasets at three levels, i.e. first clusters datasets using K-Means clustering technique, SMOTE inside clusters for handling imbalance by inducing synthetic instances of class in minority and lastly, using ENN technique to remove instances that create noise afterwards. Experiments were performed using 11 binary imbalanced datasets by varying attribute noise percentages, and by using area under receiver operating curve as performance metrics. Experimental results confirmed that proposed model shows better results than the rest. Moreover, it is also confirmed that proposed technique performs better with an increased noise percentage in binary imbalanced datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助可爱绮采纳,获得10
1秒前
fuiee完成签到,获得积分10
6秒前
陈谨完成签到 ,获得积分10
6秒前
8秒前
小巧的寻双完成签到,获得积分10
9秒前
魏魏驳回了慕青应助
14秒前
张宏磊发布了新的文献求助10
14秒前
Longfei发布了新的文献求助10
18秒前
21秒前
22秒前
慕青应助张宏磊采纳,获得10
24秒前
迷茫菜ji完成签到 ,获得积分10
24秒前
26秒前
27秒前
35秒前
JamesPei应助猪猪hero采纳,获得10
39秒前
善学以致用应助废寝忘食采纳,获得10
40秒前
dai完成签到 ,获得积分20
41秒前
42秒前
Kevin发布了新的文献求助10
44秒前
45秒前
废寝忘食完成签到,获得积分10
46秒前
小二郎应助隐形的凡阳采纳,获得10
48秒前
废寝忘食发布了新的文献求助10
50秒前
55秒前
pharpan发布了新的文献求助30
57秒前
58秒前
59秒前
1分钟前
可爱绮发布了新的文献求助10
1分钟前
浮游应助金银花采纳,获得10
1分钟前
越明年发布了新的文献求助10
1分钟前
魏魏给魏魏的求助进行了留言
1分钟前
1分钟前
猪猪hero发布了新的文献求助10
1分钟前
测量幽冥完成签到 ,获得积分10
1分钟前
Jere发布了新的文献求助20
1分钟前
白开水发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668800
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514564
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459512