Improved Hybrid Bag-Boost Ensemble With K-Means-SMOTE–ENN Technique for Handling Noisy Class Imbalanced Data

过采样 欠采样 重采样 计算机科学 噪音(视频) 人工智能 模式识别(心理学) 聚类分析 班级(哲学) 数据挖掘 机器学习 二进制数 数学 计算机网络 图像(数学) 算术 带宽(计算)
作者
Arjun Puri,Manoj Gupta
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:65 (1): 124-138 被引量:43
标识
DOI:10.1093/comjnl/bxab039
摘要

Abstract A class imbalance problem plays a vital role while dealing with classes with rare number of instances. Noisy class imbalanced datasets create considerable effect on the machine learning classification of classes. Data resampling techniques commonly used for handling class imbalance problem show insignificant behavior in noisy imbalanced datasets. To cure curse of data resampling technique in noisy class imbalanced data, we have proposed improved hybrid bag-boost with proposed resampling technique model. This model contains proposed resampling technique used for handling noisy imbalanced datasets. Proposed resampling technique comprises K-Means SMOTE (Synthetic Minority Oversampling TEchnique) as an oversampling technique and edited nearest neighbor (ENN) undersampling technique used as noise removal. This resampling technique is used to mitigate noise in imbalanced datasets at three levels, i.e. first clusters datasets using K-Means clustering technique, SMOTE inside clusters for handling imbalance by inducing synthetic instances of class in minority and lastly, using ENN technique to remove instances that create noise afterwards. Experiments were performed using 11 binary imbalanced datasets by varying attribute noise percentages, and by using area under receiver operating curve as performance metrics. Experimental results confirmed that proposed model shows better results than the rest. Moreover, it is also confirmed that proposed technique performs better with an increased noise percentage in binary imbalanced datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
思源应助明天开始戒绿茶采纳,获得10
5秒前
6秒前
7秒前
俭朴的又菡完成签到,获得积分10
7秒前
小苹果发布了新的文献求助10
7秒前
大洋洋完成签到,获得积分10
7秒前
HKY发布了新的文献求助10
8秒前
10秒前
10秒前
东木应助执葵采纳,获得20
12秒前
AlwaysKim发布了新的文献求助10
12秒前
12秒前
13秒前
FashionBoy应助涵泽采纳,获得10
13秒前
mue发布了新的文献求助10
15秒前
15秒前
噜噜晓发布了新的文献求助10
15秒前
16秒前
科研通AI2S应助CC采纳,获得10
17秒前
19秒前
顾矜应助duxiao采纳,获得10
19秒前
一切顺利完成签到,获得积分10
20秒前
21秒前
houfei发布了新的文献求助10
21秒前
张国柱完成签到,获得积分10
22秒前
漏脑之鱼完成签到 ,获得积分10
22秒前
23秒前
充电宝应助璨澄采纳,获得10
23秒前
cwx发布了新的文献求助10
23秒前
暖小阳完成签到,获得积分10
24秒前
25秒前
26秒前
涵泽发布了新的文献求助10
26秒前
maymei发布了新的文献求助10
28秒前
鞋子完成签到,获得积分10
29秒前
29秒前
jyd完成签到,获得积分10
31秒前
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382