Nucleation and growth in solution synthesis of nanostructures – From fundamentals to advanced applications

成核 纳米技术 材料科学 纳米结构 同步加速器 微流控 计算机科学 化学 物理 有机化学 核物理学
作者
Ke‐Jun Wu,Edmund C. M. Tse,Congxiao Shang,Zhengxiao Guo
出处
期刊:Progress in Materials Science [Elsevier]
卷期号:123: 100821-100821 被引量:122
标识
DOI:10.1016/j.pmatsci.2021.100821
摘要

Nucleation and growth are two important and entwined processes in materials synthesis and engineering. While understanding of the fundamental mechanisms of the processes remain challenging, there is a growing demand for much improved control over and modification of nanostructures with precise geometrical and chemical features, well-tailored surface properties and functional attributes. To this end, we first examine the key concepts of the classical and non-classical theories and then emphasise mechanistic studies of nucleation and growth. Particularly, the state-of-the-art imaging, signal and/or data acquisition techniques are discussed, including in-situ liquid phase transmission electron microscopy, in-situ synchrotron X-ray diffraction, microfluidic platforms and machine learning. Both quantitative and qualitative experimental results with high temporal and spatial resolutions provide further insights into these nanofabrication processes for representative systems, such as Au nanoparticles and CaCO3, and subsequently guide the rational design and production of materials with desirable properties. Based on current knowledge, strategies of leveraging external fields to manipulate the nucleation and growth processes are presented. Several case studies in important technological scenarios are discussed to inspire further attempts for precisely engineered solutions. Finally, further understanding of the processes are highlighted along with potential applications and future perspectives of controlling solution-synthesized nanostructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咚咚咚发布了新的文献求助10
刚刚
1秒前
willen完成签到,获得积分10
1秒前
1秒前
奇怪的柒完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
文静的枫叶完成签到,获得积分10
3秒前
科目三应助神麒小雪采纳,获得10
3秒前
zzznznnn发布了新的文献求助10
4秒前
pbf发布了新的文献求助20
4秒前
科研通AI5应助有风采纳,获得10
5秒前
Lin完成签到,获得积分10
5秒前
科研通AI5应助肉松小贝采纳,获得10
6秒前
粉色完成签到,获得积分10
6秒前
Ll发布了新的文献求助10
6秒前
6秒前
愉快彩虹发布了新的文献求助10
7秒前
CTL完成签到,获得积分10
7秒前
7秒前
共享精神应助加减乘除采纳,获得10
7秒前
7秒前
恬恬完成签到,获得积分10
7秒前
8秒前
22发布了新的文献求助10
8秒前
aacc956发布了新的文献求助10
8秒前
8秒前
谨慎涵柏完成签到,获得积分10
9秒前
快乐的如风完成签到,获得积分10
10秒前
11秒前
吃猫的鱼完成签到,获得积分10
11秒前
脑洞疼应助润润轩轩采纳,获得10
12秒前
刘文静完成签到,获得积分10
13秒前
Southluuu发布了新的文献求助10
13秒前
chenjyuu发布了新的文献求助10
13秒前
13秒前
粗暴的仙人掌完成签到,获得积分20
13秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759