清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification of WHO II/III gliomas by 16 prognostic-related gene signatures using machine learning methods

胶质瘤 比例危险模型 基因 癌变 多元统计 肿瘤科 生存分析 计算生物学 医学 内科学 生物 癌症 计算机科学 机器学习 遗传学 癌症研究
作者
Yameng Wu,Yu Sa,Yu Guo,Qifeng Li,Ning Zhang
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:29 (9): 1622-1639 被引量:4
标识
DOI:10.2174/0929867328666210827103049
摘要

It is found that the prognosis of gliomas of the same grade has large differences among World Health Organization (WHO) grade II and III in clinical observation. Therefore, a better understanding of the genetics and molecular mechanisms underlying WHO grade II and III gliomas is required, with the aim of developing a classification scheme at the molecular level rather than the conventional pathological morphology level.We performed survival analysis combined with machine learning methods of Least Absolute Shrinkage and Selection Operator using expression datasets downloaded from the Chinese Glioma Genome Atlas as well as The Cancer Genome Atlas. Risk scores were calculated by the product of expression level of overall survival-related genes and their multivariate Cox proportional hazards regression coefficients. WHO grade II and III gliomas were categorized into the low-risk subgroup, medium-risk subgroup, and high-risk subgroup. We used the 16 prognostic-related genes as input features to build a classification model based on prognosis using a fully connected neural network. Gene function annotations were also performed.The 16 genes (AKNAD1, C7orf13, CDK20, CHRFAM7A, CHRNA1, EFNB1, GAS1, HIST2H2BE, KCNK3, KLHL4, LRRK2, NXPH3, PIGZ, SAMD5, ERINC2, and SIX6) related to the glioma prognosis were screened. The 16 selected genes were associated with the development of gliomas and carcinogenesis. The accuracy of an external validation data set of the fully connected neural network model from the two cohorts reached 95.5%. Our method has good potential capability in classifying WHO grade II and III gliomas into low-risk, medium-risk, and high-risk subgroups. The subgroups showed significant (P<0.01) differences in overall survival.This resulted in the identification of 16 genes that were related to the prognosis of gliomas. Here we developed a computational method to discriminate WHO grade II and III gliomas into three subgroups with distinct prognoses. The gene expressionbased method provides a reliable alternative to determine the prognosis of gliomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Panther完成签到,获得积分10
4秒前
黙宇循光完成签到 ,获得积分10
6秒前
卡卡罗特先森完成签到 ,获得积分10
7秒前
邓代容完成签到 ,获得积分10
38秒前
39秒前
科研通AI6应助fishway采纳,获得10
40秒前
55秒前
1分钟前
万能图书馆应助fishway采纳,获得10
1分钟前
挣钱抱男模完成签到,获得积分10
1分钟前
1分钟前
南桥发布了新的文献求助10
1分钟前
Una完成签到,获得积分10
1分钟前
1分钟前
uppercrusteve完成签到,获得积分10
1分钟前
希望天下0贩的0应助饺子采纳,获得10
1分钟前
研友_VZG7GZ应助南桥采纳,获得10
1分钟前
2分钟前
饺子发布了新的文献求助10
2分钟前
Akim应助fishway采纳,获得10
2分钟前
小西完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
饺子完成签到,获得积分10
2分钟前
斯文的傲珊完成签到,获得积分10
2分钟前
一个小胖子完成签到,获得积分10
2分钟前
SciGPT应助bji采纳,获得10
2分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
浮游应助fishway采纳,获得10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
fishway发布了新的文献求助10
3分钟前
wood完成签到,获得积分10
3分钟前
Tong完成签到,获得积分0
3分钟前
3分钟前
bji发布了新的文献求助10
3分钟前
大个应助fishway采纳,获得10
3分钟前
一路有你完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418494
求助须知:如何正确求助?哪些是违规求助? 4534207
关于积分的说明 14143270
捐赠科研通 4450428
什么是DOI,文献DOI怎么找? 2441241
邀请新用户注册赠送积分活动 1432967
关于科研通互助平台的介绍 1410352