Identification of WHO II/III gliomas by 16 prognostic-related gene signatures using machine learning methods

胶质瘤 比例危险模型 基因 癌变 多元统计 肿瘤科 生存分析 计算生物学 医学 内科学 生物 癌症 计算机科学 机器学习 遗传学 癌症研究
作者
Yameng Wu,Yu Sa,Yu Guo,Qifeng Li,Ning Zhang
出处
期刊:Current Medicinal Chemistry [Bentham Science Publishers]
卷期号:29 (9): 1622-1639 被引量:4
标识
DOI:10.2174/0929867328666210827103049
摘要

It is found that the prognosis of gliomas of the same grade has large differences among World Health Organization (WHO) grade II and III in clinical observation. Therefore, a better understanding of the genetics and molecular mechanisms underlying WHO grade II and III gliomas is required, with the aim of developing a classification scheme at the molecular level rather than the conventional pathological morphology level.We performed survival analysis combined with machine learning methods of Least Absolute Shrinkage and Selection Operator using expression datasets downloaded from the Chinese Glioma Genome Atlas as well as The Cancer Genome Atlas. Risk scores were calculated by the product of expression level of overall survival-related genes and their multivariate Cox proportional hazards regression coefficients. WHO grade II and III gliomas were categorized into the low-risk subgroup, medium-risk subgroup, and high-risk subgroup. We used the 16 prognostic-related genes as input features to build a classification model based on prognosis using a fully connected neural network. Gene function annotations were also performed.The 16 genes (AKNAD1, C7orf13, CDK20, CHRFAM7A, CHRNA1, EFNB1, GAS1, HIST2H2BE, KCNK3, KLHL4, LRRK2, NXPH3, PIGZ, SAMD5, ERINC2, and SIX6) related to the glioma prognosis were screened. The 16 selected genes were associated with the development of gliomas and carcinogenesis. The accuracy of an external validation data set of the fully connected neural network model from the two cohorts reached 95.5%. Our method has good potential capability in classifying WHO grade II and III gliomas into low-risk, medium-risk, and high-risk subgroups. The subgroups showed significant (P<0.01) differences in overall survival.This resulted in the identification of 16 genes that were related to the prognosis of gliomas. Here we developed a computational method to discriminate WHO grade II and III gliomas into three subgroups with distinct prognoses. The gene expressionbased method provides a reliable alternative to determine the prognosis of gliomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
banlu发布了新的文献求助10
3秒前
天天快乐应助单纯天晴采纳,获得10
3秒前
向东东发布了新的文献求助10
4秒前
苯偶姻完成签到 ,获得积分10
4秒前
eliseo完成签到 ,获得积分10
4秒前
玖文发布了新的文献求助10
6秒前
佳佳应助向美而死采纳,获得10
8秒前
9秒前
10秒前
11秒前
木柟完成签到,获得积分10
11秒前
Bear完成签到 ,获得积分10
12秒前
玖文完成签到,获得积分10
12秒前
彭于晏应助专注乌冬面采纳,获得10
14秒前
14秒前
云氲完成签到 ,获得积分10
14秒前
tangz完成签到,获得积分20
15秒前
15秒前
16秒前
含蓄元冬发布了新的文献求助10
16秒前
16秒前
iNk应助秀丽笑容采纳,获得20
18秒前
keeno完成签到,获得积分10
19秒前
所所应助ccc采纳,获得10
19秒前
Jeriu发布了新的文献求助10
20秒前
小蘑菇应助tangz采纳,获得10
20秒前
香蕉觅云应助夜雨听风眠z采纳,获得10
21秒前
23秒前
安详凡发布了新的文献求助10
25秒前
Jeriu完成签到,获得积分10
25秒前
wudi19887发布了新的文献求助10
29秒前
29秒前
ED应助科研通管家采纳,获得10
29秒前
思源应助科研通管家采纳,获得10
29秒前
桐桐应助科研通管家采纳,获得10
29秒前
打打应助科研通管家采纳,获得10
29秒前
CodeCraft应助科研通管家采纳,获得10
29秒前
只A不B应助科研通管家采纳,获得10
29秒前
乐乐应助科研通管家采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966388
求助须知:如何正确求助?哪些是违规求助? 3511817
关于积分的说明 11160082
捐赠科研通 3246443
什么是DOI,文献DOI怎么找? 1793422
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388