Identification of WHO II/III gliomas by 16 prognostic-related gene signatures using machine learning methods

胶质瘤 比例危险模型 基因 癌变 多元统计 肿瘤科 生存分析 计算生物学 医学 内科学 生物 癌症 计算机科学 机器学习 遗传学 癌症研究
作者
Yameng Wu,Yu Sa,Yu Guo,Qifeng Li,Ning Zhang
出处
期刊:Current Medicinal Chemistry [Bentham Science]
卷期号:29 (9): 1622-1639 被引量:4
标识
DOI:10.2174/0929867328666210827103049
摘要

It is found that the prognosis of gliomas of the same grade has large differences among World Health Organization (WHO) grade II and III in clinical observation. Therefore, a better understanding of the genetics and molecular mechanisms underlying WHO grade II and III gliomas is required, with the aim of developing a classification scheme at the molecular level rather than the conventional pathological morphology level.We performed survival analysis combined with machine learning methods of Least Absolute Shrinkage and Selection Operator using expression datasets downloaded from the Chinese Glioma Genome Atlas as well as The Cancer Genome Atlas. Risk scores were calculated by the product of expression level of overall survival-related genes and their multivariate Cox proportional hazards regression coefficients. WHO grade II and III gliomas were categorized into the low-risk subgroup, medium-risk subgroup, and high-risk subgroup. We used the 16 prognostic-related genes as input features to build a classification model based on prognosis using a fully connected neural network. Gene function annotations were also performed.The 16 genes (AKNAD1, C7orf13, CDK20, CHRFAM7A, CHRNA1, EFNB1, GAS1, HIST2H2BE, KCNK3, KLHL4, LRRK2, NXPH3, PIGZ, SAMD5, ERINC2, and SIX6) related to the glioma prognosis were screened. The 16 selected genes were associated with the development of gliomas and carcinogenesis. The accuracy of an external validation data set of the fully connected neural network model from the two cohorts reached 95.5%. Our method has good potential capability in classifying WHO grade II and III gliomas into low-risk, medium-risk, and high-risk subgroups. The subgroups showed significant (P<0.01) differences in overall survival.This resulted in the identification of 16 genes that were related to the prognosis of gliomas. Here we developed a computational method to discriminate WHO grade II and III gliomas into three subgroups with distinct prognoses. The gene expressionbased method provides a reliable alternative to determine the prognosis of gliomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
王菲完成签到,获得积分10
3秒前
停停走走发布了新的文献求助10
3秒前
3秒前
wuwenxin发布了新的文献求助30
3秒前
5秒前
6秒前
科研通AI2S应助xiexiaopa采纳,获得10
7秒前
汉堡包应助停停走走采纳,获得10
9秒前
淡淡菠萝发布了新的文献求助10
11秒前
充电宝应助GXNU采纳,获得10
11秒前
个性的紫菜应助caixia28256采纳,获得10
13秒前
干净菀发布了新的文献求助30
14秒前
Willing完成签到 ,获得积分10
17秒前
20秒前
20秒前
林天完成签到,获得积分10
22秒前
zhegewa完成签到,获得积分10
22秒前
23秒前
24秒前
李朝富发布了新的文献求助10
25秒前
李辉完成签到,获得积分10
25秒前
天将明完成签到 ,获得积分10
26秒前
26秒前
zhegewa发布了新的文献求助10
28秒前
美好芳发布了新的文献求助10
28秒前
223311完成签到,获得积分10
28秒前
xixi完成签到,获得积分10
28秒前
GXNU完成签到,获得积分10
31秒前
lily88发布了新的文献求助10
32秒前
32秒前
Lucas应助Ainra采纳,获得10
32秒前
32秒前
rumeng完成签到,获得积分10
35秒前
梨米特完成签到,获得积分10
35秒前
35秒前
GXNU发布了新的文献求助10
36秒前
CodeCraft应助李朝富采纳,获得10
38秒前
38秒前
努努力完成签到,获得积分10
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140679
求助须知:如何正确求助?哪些是违规求助? 2791473
关于积分的说明 7799108
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302064
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194