材料科学
范德瓦尔斯力
热电效应
高分辨率透射电子显微镜
退火(玻璃)
微观结构
凝聚态物理
平面的
热电材料
扫描透射电子显微镜
透射电子显微镜
结晶学
纳米技术
热导率
热力学
复合材料
物理
计算机科学
计算机图形学(图像)
量子力学
分子
化学
作者
Qi Xia,Yong Yu,Xiao Xu,Jicheng Wang,Fudong Zhang,Bin Zhu,Jiaqing He,Xiaolian Chao,Zupei Yang,Di Wu
标识
DOI:10.1016/j.mtphys.2021.100507
摘要
Pseudo-binary GeTe-rich Sb2Te3(GeTe)n materials recently exhibited promising thermoelectric performance at intermediate temperatures (500–800 K), largely due to the intrinsically low lattice thermal conductivity coming from the discrete van der Waals gaps dispersed in a rhombohedral matrix. In this work, by alloying Ge with Pb and adjusting the molar ratio of GeTe/Sb2Te3 in the binary, we successfully modulated the crystal structure from rhombohedral Sb2Te3(GeTe)17 to pseudo-cubic (Sb2Te3)0.5(Ge0.91Pb0.09Te)17.5 at room temperature, thus achieved higher electronic band degeneracy and electrical performance. High-resolution scanning transmission electron microscope (STEM) characterizations revealed the existence of high-density discrete van der Waals gaps (length ∼ 10–40 nm) along {111} equivalent planes in GeTe matrix; surprisingly, these planar defects appear quite stable in following annealing processes at 873 K unlike what literatures reported. Further elemental mapping suggests that the enrichment of Pb element around van der Waals gaps are possibly responsible to the formation and stabilization of these planar defects. Eventually, a figure of merit ZTmax ∼2.4 at 773 K and average ZTavg ∼1.5 at 323–773 K were simultaneously realized in the (Sb2Te3)0.5(Ge0.91Pb0.09Te)17.5 sample after 4 days annealing at 873 K.
科研通智能强力驱动
Strongly Powered by AbleSci AI