Automatic segmentation of blood cells from microscopic slides: A comparative analysis

分割 水准点(测量) 生物 血涂片 人工智能 配子体 深度学习 电池类型 计算机科学 细胞 模式识别(心理学) 机器学习 疟疾 免疫学 恶性疟原虫 大地测量学 遗传学 地理
作者
Deponker Sarker Depto,Shazidur Rahman,Md. Mekayel Hosen,Mst Shapna Akter,Tamanna Rahman Reme,Aimon Rahman,Hasib Zunair,M. Sohel Rahman,M. R. C. Mahdy
出处
期刊:Tissue & Cell [Elsevier]
卷期号:73: 101653-101653 被引量:16
标识
DOI:10.1016/j.tice.2021.101653
摘要

With the recent developments in deep learning, automatic cell segmentation from images of microscopic examination slides seems to be a solved problem as recent methods have achieved comparable results on existing benchmark datasets. However, most of the existing cell segmentation benchmark datasets either contain a single cell type, few instances of the cells, not publicly available. Therefore, it is unclear whether the performance improvements can generalize on more diverse datasets. In this paper, we present a large and diverse cell segmentation dataset BBBC041Seg1, which consists both of uninfected cells (i.e., red blood cells/RBCs, leukocytes) and infected cells (i.e., gametocytes, rings, trophozoites, and schizonts). Additionally, all cell types do not have equal instances, which encourages researchers to develop algorithms for learning from imbalanced classes in a few shot learning paradigm. Furthermore, we conduct a comparative study using both classical rule-based and recent deep learning state-of-the-art (SOTA) methods for automatic cell segmentation and provide them as strong baselines. We believe the introduction of BBBC041Seg will promote future research towards clinically applicable cell segmentation methods from microscopic examinations, which can be later used for downstream tasks such as detecting hematological diseases (i.e., malaria).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jun应助jessie采纳,获得10
1秒前
NexusExplorer应助儒雅的乐珍采纳,获得10
4秒前
suhua发布了新的文献求助20
4秒前
爆米花应助快帮我找找采纳,获得10
4秒前
温暖静柏完成签到,获得积分10
5秒前
慈祥的花瓣完成签到,获得积分10
5秒前
vipggl完成签到,获得积分10
7秒前
7秒前
疯狂的向日葵完成签到,获得积分10
8秒前
科研通AI2S应助sheh采纳,获得10
8秒前
酷波er应助ahaha采纳,获得10
9秒前
笙惗雪发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
科研通AI2S应助jessie采纳,获得10
14秒前
小凯应助Nico采纳,获得10
15秒前
15秒前
17秒前
搜集达人应助专一的书雪采纳,获得10
18秒前
调研昵称发布了新的文献求助10
18秒前
郑先生发布了新的文献求助10
18秒前
18秒前
乐乐应助ccc采纳,获得10
19秒前
bias发布了新的文献求助10
19秒前
Owen应助sheep采纳,获得10
19秒前
xh96完成签到,获得积分10
20秒前
hxb应助am采纳,获得10
23秒前
23秒前
23秒前
丘比特应助科研通管家采纳,获得10
24秒前
甜甜玫瑰应助科研通管家采纳,获得10
24秒前
森眸应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163395
求助须知:如何正确求助?哪些是违规求助? 2814263
关于积分的说明 7904141
捐赠科研通 2473792
什么是DOI,文献DOI怎么找? 1317118
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602187