氨硼烷
催化作用
纳米材料基催化剂
化学
水解
活化能
脱氢
无机化学
氨
氢
制氢
物理化学
有机化学
作者
Siyu Wang,Li Huang,Chengyong Liu,Wenxue He,Zhixin Long,Ya Pan,Zhihu Sun
出处
期刊:Chinese Journal of Chemical Physics
[American Institute of Physics]
日期:2021-10-20
卷期号:36 (2): 141-141
被引量:2
标识
DOI:10.1063/1674-0068/cjcp2104058
摘要
Catalytic hydrolysis of ammonia borane for dehydrogenation is a promising way for generation and storage of hydrogen energy. Catalysts with reduced utilization of costly noble metals while high activity and stability are highly desired. Herein we show that the catalytic activity of the prototypical Pt/SiO2 catalysts towards ammonia borane hydrolysis could be significantly improved by the presence of a layer of Co(OH)2 beneath the supported Pt nanoparticles. By changing the Pt:Co molar ratio in the Pt-Co(OH)2/SiO2 catalysts, the hydrogen generation rates from ammonia borane hydrolysis show a volcano-type curve, with the maximum catalytic activity at the Pt:Co molar ratio of 1:11. The highest turnover frequency value of 829 molH2·molPt−1·min−1 at room temperature outperforms most of the reported Pt-based catalysts, and the apparent activation energy is drastically decreased to 36.2 kJ/mol from 61.6 kJ/mol for Pt/SiO2. The enhanced catalytic performance of Pt-Co(OH)2/SiO2 is attributed to the electrons donation from Co atoms on Co(OH)2 to Pt occurring at the metal-hydroxide interface, which is beneficial for optimizing the oxidation cleavage of the O–H bond of attacked H2O.
科研通智能强力驱动
Strongly Powered by AbleSci AI