A network embedding framework based on integrating multiplex network for drug combination prediction

计算机科学 可扩展性 多路复用 数据挖掘 相似性(几何) 嵌入 机器学习 人工智能 生物信息学 数据库 生物 图像(数学)
作者
Liang Yu,Mingfei Xia,Q. An
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:36
标识
DOI:10.1093/bib/bbab364
摘要

Drug combination is a sensible strategy for disease treatment because it improves the treatment efficacy and reduces concomitant side effects. Due to the large number of possible combinations among candidate compounds, exhaustive screening is prohibitive. Currently, a large number of studies have focused on predicting potential drug combinations. However, these methods are not entirely satisfactory in terms of performance and scalability. In this paper, we proposed a Network Embedding frameWork in MultIplex Network (NEWMIN) to predict synthetic drug combinations. Based on a multiplex drug similarity network, we offered alternative methods to integrate useful information from different aspects and to decide the quantitative importance of each network. For drug combination prediction, we found seven novel drug combinations that have been validated by external sources among the top-ranked predictions of our model. To verify the feasibility of NEWMIN, we compared NEWMIN with other five methods, for which it showed better performance than other methods in terms of the area under the precision-recall curve and receiver operating characteristic curve.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子完成签到,获得积分10
1秒前
可耐的从安完成签到 ,获得积分10
2秒前
zho应助背后的诺言采纳,获得10
2秒前
粥粥完成签到,获得积分10
2秒前
3秒前
打打应助陈杰采纳,获得10
4秒前
充电宝应助柔弱凡松采纳,获得10
5秒前
Jasmine发布了新的文献求助10
6秒前
7秒前
7秒前
大气的秋完成签到,获得积分10
8秒前
桐桐应助BB采纳,获得10
8秒前
8秒前
8秒前
曙光完成签到,获得积分10
9秒前
9秒前
大方嵩发布了新的文献求助10
10秒前
陌路发布了新的文献求助20
10秒前
Muqi完成签到,获得积分10
10秒前
11秒前
marinemiao发布了新的文献求助10
12秒前
12秒前
丘比特应助wzxxxx采纳,获得10
13秒前
科研通AI5应助飘逸蘑菇采纳,获得10
13秒前
科研通AI2S应助cc采纳,获得10
14秒前
14秒前
14秒前
spray完成签到,获得积分10
15秒前
范范完成签到,获得积分20
15秒前
少年发布了新的文献求助10
15秒前
大力鱼发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
shilong.yang完成签到,获得积分10
17秒前
jy发布了新的文献求助10
18秒前
19秒前
19秒前
梦里发布了新的文献求助10
20秒前
falcon完成签到 ,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794