Multilabel Feature Selection: A Local Causal Structure Learning Approach

特征选择 人工智能 计算机科学 班级(哲学) 机器学习 模式识别(心理学) 特征学习 特征(语言学) 选择(遗传算法) 语言学 哲学
作者
Kui Yu,Mingzhu Cai,Xingyu Wu,Lin Liu,Jiuyong Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 3044-3057 被引量:18
标识
DOI:10.1109/tnnls.2021.3111288
摘要

Multilabel feature selection plays an essential role in high-dimensional multilabel learning tasks. Existing multilabel feature selection approaches mainly either explore the feature-label and feature-feature correlations or the label-label and feature-feature correlations. A few of them are able to deal with all three types of correlations simultaneously. To address this problem, in this article, we formulate multilabel feature selection as a local causal structure learning problem and propose a novel algorithm, M2LC. By learning the local causal structure of each class label, M2LC considers three types of feature relationships simultaneously and is scalable to high-dimensional datasets as well. To tackle false discoveries caused by the label-label correlations, M2LC consists of two novel error-correction subroutines to correct those false discoveries. Through local causal structure learning, M2LC learns the causal mechanism behind data, and thus, it can select causally informative features and visualize common features shared by class labels and specific features owned by an individual class label using the learned causal structures. Extensive experiments have been conducted to evaluate M2LC in comparison with the state-of-the-art multilabel feature selection algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
THB关注了科研通微信公众号
4秒前
boo77完成签到 ,获得积分10
5秒前
斯文败类应助洞悉采纳,获得10
7秒前
午见千山应助昵称采纳,获得10
8秒前
James发布了新的文献求助10
10秒前
Henry给文龙的求助进行了留言
11秒前
做自己的太阳应助汎影采纳,获得10
11秒前
研友_nxwBJL发布了新的文献求助10
15秒前
16秒前
19秒前
酷波er应助害怕的涔采纳,获得10
20秒前
完美世界应助灰色白面鸮采纳,获得10
23秒前
24秒前
Parotodus发布了新的文献求助50
24秒前
Hello应助Shirley采纳,获得100
24秒前
THB发布了新的文献求助10
25秒前
26秒前
大力世界发布了新的文献求助10
26秒前
luckyalias完成签到 ,获得积分10
27秒前
30秒前
玺烊烊完成签到 ,获得积分20
31秒前
31秒前
研友_nxwBJL完成签到,获得积分10
33秒前
Chou发布了新的文献求助20
33秒前
猫刀完成签到,获得积分10
36秒前
39秒前
42秒前
情怀应助科研通管家采纳,获得30
43秒前
研友_VZG7GZ应助科研通管家采纳,获得10
43秒前
加菲丰丰应助科研通管家采纳,获得20
43秒前
加菲丰丰应助科研通管家采纳,获得20
43秒前
Jasper应助科研通管家采纳,获得10
43秒前
43秒前
44秒前
搜集达人应助科研通管家采纳,获得30
44秒前
stranger应助科研通管家采纳,获得10
44秒前
46秒前
脑洞疼应助吃猫的鱼采纳,获得10
47秒前
cmq完成签到 ,获得积分10
47秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138489
求助须知:如何正确求助?哪些是违规求助? 2789437
关于积分的说明 7791339
捐赠科研通 2445767
什么是DOI,文献DOI怎么找? 1300644
科研通“疑难数据库(出版商)”最低求助积分说明 625975
版权声明 601079