Enhancing underwater image via adaptive color and contrast enhancement, and denoising

计算机科学 人工智能 对比度(视觉) 计算机视觉 降噪 水下 阈值 双边滤波器 失真(音乐) 色调 彩色图像 滤波器(信号处理) 图像(数学) 图像处理 地质学 海洋学 放大器 带宽(计算) 计算机网络
作者
Xinjie Li,Guojia Hou,Kunqian Li,Zhenkuan Pan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:111: 104759-104759 被引量:60
标识
DOI:10.1016/j.engappai.2022.104759
摘要

Images captured under water are often characterized by low contrast, color distortion, and noise, hindering some visual tasks carried out on it. Despite remarkable breakthrough has been made in recent years, effective and robust enhancement of degraded image remains a challenging problem. To improve the quality of underwater images, we propose a novel scheme by constructing an adaptive color and contrast enhancement, and denoising (ACCE-D) framework. In the proposed framework, Difference of Gaussian (DoG) filter and bilateral filter are respectively employed to decompose the high-frequency and low-frequency components. Benefited from this separation, we utilize soft-thresholding operation to suppress the noise in the high-frequency component. Specially, the low-frequency component is enhanced by using an adaptive color and contrast enhancement (ACCE) strategy. Moreover, we derive a numerical solution for ACCE, and adopt a pyramid-based strategy to accelerate the solving procedure. Both qualitative and quantitative experiments demonstrate that our strategy is effective in color correction, contrast enhancement, and detail revealing. In the quantitative evaluations, by performing on the 890 real-world underwater images from UIEBD, the proposed method obtains 0.65 UCIQE, 1.59 UIQM, 0.81 FDUM, 1.34 PCQI, 0.62 CBPD, and 7.75 entropy scores, achieving average increase of 5% comparing with several state-of-the-art methods. Furthermore, we have verified the utility of our proposed ACCE-D for enhancing other types of degraded scenes, including foggy scene, sandstorm scene and low-light scene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
corner发布了新的文献求助10
2秒前
anoymous完成签到,获得积分20
2秒前
小杨完成签到,获得积分10
3秒前
xiaoxixixier完成签到 ,获得积分10
3秒前
今后应助sch采纳,获得10
4秒前
马1112完成签到,获得积分10
4秒前
branqi完成签到 ,获得积分10
5秒前
007完成签到,获得积分10
7秒前
无奈应助Li采纳,获得10
7秒前
7秒前
7秒前
烨枫晨曦完成签到,获得积分10
8秒前
共享精神应助moncypool采纳,获得30
9秒前
jiangshanshan发布了新的文献求助10
10秒前
完美世界应助divedown采纳,获得10
10秒前
12秒前
12秒前
13秒前
友好凌寒完成签到 ,获得积分10
17秒前
小杨发布了新的文献求助10
18秒前
renhu发布了新的文献求助100
19秒前
华仔应助Ar采纳,获得10
19秒前
景辣条完成签到,获得积分10
19秒前
21秒前
可爱的函函应助xcc采纳,获得10
23秒前
zc发布了新的文献求助10
24秒前
彭于彦祖应助科研通管家采纳,获得50
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
25秒前
云瑾应助科研通管家采纳,获得10
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
25秒前
顾矜应助科研通管家采纳,获得10
25秒前
Akim应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
嗯哼应助科研通管家采纳,获得20
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
嗯哼应助科研通管家采纳,获得20
25秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164013
求助须知:如何正确求助?哪些是违规求助? 2814801
关于积分的说明 7906532
捐赠科研通 2474357
什么是DOI,文献DOI怎么找? 1317472
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198