棕榈酰化
视神经肽
癌症研究
MHC I级
癌症免疫疗法
免疫疗法
生物
结直肠癌
免疫系统
免疫学
癌症
主要组织相容性复合体
突变
基因
遗传学
酶
生物化学
半胱氨酸
作者
Wei Du,Fang Hua,Li Xiong,Jian Zhang,Shasha Li,Weichao Wang,Jiajia Zhang,Weimin Wang,Peng Liao,Yizhen Yan,Gaopeng Li,Shuang Wei,Sara Grove,Linda Vatan,Witold Zgodziński,Marek Majewski,Grzegorz Wallner,Haoyan Chen,Ilona Kryczek,Jing‐Yuan Fang,Weiping Zou
出处
期刊:Cancer Discovery
[American Association for Cancer Research]
日期:2021-02-24
卷期号:11 (7): 1826-1843
被引量:41
标识
DOI:10.1158/2159-8290.cd-20-1571
摘要
Abstract Mutations in IFN and MHC signaling genes endow immunotherapy resistance. Patients with colorectal cancer infrequently exhibit IFN and MHC signaling gene mutations and are generally resistant to immunotherapy. In exploring the integrity of IFN and MHC signaling in colorectal cancer, we found that optineurin was a shared node between the two pathways and predicted colorectal cancer patient outcome. Loss of optineurin occurs in early-stage human colorectal cancer. Immunologically, optineurin deficiency was shown to attenuate IFNGR1 and MHC-I expression, impair T-cell immunity, and diminish immunotherapy efficacy in murine cancer models and patients with cancer. Mechanistically, we observed that IFNGR1 was S-palmitoylated on Cys122, and AP3D1 bound with and sorted palmitoylated IFNGR1 to lysosome for degradation. Unexpectedly, optineurin interacted with AP3D1 to prevent palmitoylated IFNGR1 lysosomal sorting and degradation, thereby maintaining IFNγ and MHC-I signaling integrity. Furthermore, pharmacologically targeting IFNGR1 palmitoylation stabilized IFNGR1, augmented tumor immunity, and sensitized checkpoint therapy. Thus, loss of optineurin drives immune evasion and intrinsic immunotherapy resistance in colorectal cancer. Significance: Loss of optineurin impairs the integrity of both IFNγ and MHC-I signaling pathways via palmitoylation-dependent IFNGR1 lysosomal sorting and degradation, thereby driving immune evasion and intrinsic immunotherapy resistance in colorectal cancer. Our work suggests that pharmacologically targeting IFNGR1 palmitoylation can stabilize IFNGR1, enhance T-cell immunity, and sensitize checkpoint therapy in colorectal cancer. See related commentary by Salvagno and Cubillos-Ruiz, p. 1623. This article is highlighted in the In This Issue feature, p. 1601
科研通智能强力驱动
Strongly Powered by AbleSci AI