Tumor Biology and Natural History

自然史 自然(考古学) 生物 计算生物学 环境伦理学 生态学 哲学 古生物学
作者
Daniele Fanale,Juan Iovanna,Antonio Giordano,Antonio Russo,Viviana Bazan
出处
期刊:UNIPA Springer series 卷期号:: 15-31
标识
DOI:10.1007/978-3-030-56051-5_2
摘要

Tumors are not uniform diseases but heterogeneous entities consisting of cell populations called cell clones, with different genetic and molecular features. The ability of a tumor to evolve and fit to host microenvironment, by developing often resistance mechanisms to the anticancer therapies, is dependent on this biological variability. In fact, the variability observed within individual tumors, known as intra-tumor heterogeneity, represents the crucial step in cancer clonal evolution process, by promoting and driving a genetic mechanism able to select the fittest cell clones. A single clonal origin is usually shown by most of tumors at the early stages of the disease, whereas advanced-stage tumors may contain multiple cell populations with different characteristics.Knowing thoroughly the evolutionary history of a tumor along the space-time axis is an essential factor for developing new screening strategies able to early identify neoplasm when genetic variability is low and the disease is evolving. The implementation of more specific and sensitive clinical approaches is needed, due to the correlations observed between clinical outcome and tumor diversity, in order to better characterize and evaluate tumor heterogeneity and early detect the subclonal events within tumor. During the last years, progress in biotechnology, genomics, and molecular pathology determined improvements in understanding of tumor biology, leading to the discovery of several potential tumor biomarkers, suitable for clinical use. The identification of molecular biomarkers in clinical oncology and the advent of the immunotherapy have significantly modified the natural history of many tumors.In this chapter, we will summarize the key concepts related to biology and natural history of tumors, describing the model of cancer clonal evolution and discussing how the understanding of biological processes may affect the natural history of the disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高玉峰发布了新的文献求助10
刚刚
1秒前
1秒前
匹诺曹完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
俭朴雪兰完成签到,获得积分10
3秒前
书生发布了新的文献求助30
3秒前
4秒前
研友_8RyzBZ发布了新的文献求助10
5秒前
Zenia发布了新的文献求助10
5秒前
Nell发布了新的文献求助10
6秒前
orixero应助橙酒采纳,获得10
6秒前
成就的咖啡完成签到 ,获得积分10
7秒前
FadeSv完成签到,获得积分10
7秒前
zhangyk发布了新的文献求助10
8秒前
科研通AI6应助高玉峰采纳,获得10
8秒前
优雅的笑阳完成签到,获得积分10
8秒前
酷炫的谷丝完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助coldzer0采纳,获得10
10秒前
量子星尘发布了新的文献求助10
12秒前
伶俐的绝山关注了科研通微信公众号
13秒前
聪明的鞅发布了新的文献求助10
14秒前
haly完成签到 ,获得积分10
14秒前
忧郁的平安完成签到,获得积分10
15秒前
彭于晏应助高玉峰采纳,获得10
17秒前
17秒前
平常的苡完成签到,获得积分10
18秒前
清河海风完成签到,获得积分10
18秒前
19秒前
啦啦啦啦完成签到 ,获得积分10
20秒前
无限的晓蓝关注了科研通微信公众号
21秒前
zhazd发布了新的文献求助10
22秒前
23秒前
24秒前
橙酒发布了新的文献求助10
25秒前
nini应助出岫采纳,获得50
26秒前
杨佳莉完成签到,获得积分10
26秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781