Tumor Biology and Natural History

自然史 自然(考古学) 生物 计算生物学 环境伦理学 生态学 哲学 古生物学
作者
Daniele Fanale,Juan Iovanna,Antonio Giordano,Antonio Russo,Viviana Bazan
出处
期刊:UNIPA Springer series 卷期号:: 15-31
标识
DOI:10.1007/978-3-030-56051-5_2
摘要

Tumors are not uniform diseases but heterogeneous entities consisting of cell populations called cell clones, with different genetic and molecular features. The ability of a tumor to evolve and fit to host microenvironment, by developing often resistance mechanisms to the anticancer therapies, is dependent on this biological variability. In fact, the variability observed within individual tumors, known as intra-tumor heterogeneity, represents the crucial step in cancer clonal evolution process, by promoting and driving a genetic mechanism able to select the fittest cell clones. A single clonal origin is usually shown by most of tumors at the early stages of the disease, whereas advanced-stage tumors may contain multiple cell populations with different characteristics.Knowing thoroughly the evolutionary history of a tumor along the space-time axis is an essential factor for developing new screening strategies able to early identify neoplasm when genetic variability is low and the disease is evolving. The implementation of more specific and sensitive clinical approaches is needed, due to the correlations observed between clinical outcome and tumor diversity, in order to better characterize and evaluate tumor heterogeneity and early detect the subclonal events within tumor. During the last years, progress in biotechnology, genomics, and molecular pathology determined improvements in understanding of tumor biology, leading to the discovery of several potential tumor biomarkers, suitable for clinical use. The identification of molecular biomarkers in clinical oncology and the advent of the immunotherapy have significantly modified the natural history of many tumors.In this chapter, we will summarize the key concepts related to biology and natural history of tumors, describing the model of cancer clonal evolution and discussing how the understanding of biological processes may affect the natural history of the disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助nimeng123采纳,获得10
刚刚
杨悦发布了新的文献求助10
1秒前
3秒前
受伤书文完成签到 ,获得积分10
3秒前
三斤发布了新的文献求助10
3秒前
单纯晋鹏完成签到,获得积分10
4秒前
4秒前
求知发布了新的文献求助10
5秒前
纪间发布了新的文献求助10
6秒前
Sandm完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
zengdan发布了新的文献求助10
8秒前
香蕉觅云应助谢同学采纳,获得10
8秒前
9秒前
jiaojaioo完成签到,获得积分10
9秒前
碧松桥发布了新的文献求助20
10秒前
moonlight完成签到,获得积分10
10秒前
杨悦完成签到,获得积分10
11秒前
12秒前
12秒前
Driscoll完成签到 ,获得积分10
12秒前
不羁发布了新的文献求助10
13秒前
华仔应助白衣修身采纳,获得10
13秒前
深情安青应助chenziibin采纳,获得10
13秒前
jdjd发布了新的文献求助10
13秒前
明理若南发布了新的文献求助20
13秒前
Jaho完成签到,获得积分10
13秒前
14秒前
活力的如冬完成签到,获得积分10
14秒前
赤橙完成签到,获得积分10
14秒前
nikita完成签到,获得积分10
15秒前
王旭一泓完成签到,获得积分10
15秒前
汉堡包应助zengdan采纳,获得10
16秒前
七月夏栀完成签到,获得积分10
16秒前
17秒前
17秒前
等你下课完成签到 ,获得积分10
17秒前
nimeng123发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633897
求助须知:如何正确求助?哪些是违规求助? 4029610
关于积分的说明 12467882
捐赠科研通 3715936
什么是DOI,文献DOI怎么找? 2050448
邀请新用户注册赠送积分活动 1082017
科研通“疑难数据库(出版商)”最低求助积分说明 964216