Generative Memory-Guided Semantic Reasoning Model for Image Inpainting

修补 计算机科学 人工智能 先验概率 语义学(计算机科学) 推论 模式识别(心理学) 生成模型 图像(数学) 生成语法 机器学习 计算机视觉 自然语言处理 贝叶斯概率 程序设计语言
作者
Xin Feng,Wenjie Pei,Fengjun Li,Fanglin Chen,David Zhang,Guangming Lu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (11): 7432-7447 被引量:9
标识
DOI:10.1109/tcsvt.2022.3188169
摘要

The critical challenge of single image inpainting stems from accurate semantic inference via limited information while maintaining image quality. Typical methods for semantic image inpainting train an encoder-decoder network by learning a one-to-one mapping from the corrupted image to the inpainted version. While such methods perform well on images with small corrupted regions, it is challenging for these methods to deal with images with large corrupted area due to two potential limitations. 1) Such one-to-one mapping paradigm tends to overfit each single training pair of images; 2) The inter-image prior knowledge about the general distribution patterns of visual semantics, which can be transferred across images sharing similar semantics, is not explicitly exploited. In this paper, we propose the Generative Memory-guided Semantic Reasoning Model (GM-SRM), which infers the content of corrupted regions based on not only the known regions of the corrupted image, but also the learned inter-image reasoning priors characterizing the generalizable semantic distribution patterns between similar images. In particular, the proposed GM-SRM first pre-learns a generative memory from the whole training data to explicitly learn the distribution of different semantic patterns. Then the learned memory are leveraged to retrieve the matching semantics for the current corrupted image to perform semantic reasoning during image inpainting. While the encoder-decoder network is used for guaranteeing the pixel-level content consistency, our generative priors are favorable for performing high-level semantic reasoning, which is particularly effective for inferring semantic content for large corrupted area. Extensive experiments on Paris Street View, CelebA-HQ, and Places2 benchmarks demonstrate that our GM-SRM outperforms the state-of-the-art methods for image inpainting in terms of both visual quality and quantitative metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppp完成签到,获得积分10
1秒前
CodeCraft应助武雨寒采纳,获得10
2秒前
圆你心安发布了新的文献求助10
2秒前
KD发布了新的文献求助10
2秒前
zhanghao发布了新的文献求助10
3秒前
饼藏发布了新的文献求助10
4秒前
4秒前
4秒前
思源应助一朵采纳,获得10
4秒前
可玩性完成签到 ,获得积分10
4秒前
YY完成签到,获得积分10
5秒前
6秒前
sdsa完成签到,获得积分10
6秒前
7秒前
7秒前
phw发布了新的文献求助10
9秒前
Kayla发布了新的文献求助10
9秒前
9秒前
Felix发布了新的文献求助10
10秒前
10秒前
JamesPei应助yuwen采纳,获得10
11秒前
科研通AI5应助柳白采纳,获得10
11秒前
12秒前
12秒前
noite发布了新的文献求助10
12秒前
zzzz完成签到,获得积分10
13秒前
无聊的怀绿完成签到,获得积分10
13秒前
高贵紫丝发布了新的文献求助10
14秒前
15秒前
16秒前
xuexi发布了新的文献求助10
16秒前
sudor123456完成签到,获得积分10
17秒前
完美世界应助迷人的冰蓝采纳,获得10
18秒前
18秒前
十七发布了新的文献求助10
19秒前
安徒发布了新的文献求助10
19秒前
xuexi完成签到,获得积分10
21秒前
22秒前
23秒前
da_line发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528