Generative Memory-Guided Semantic Reasoning Model for Image Inpainting

修补 计算机科学 人工智能 先验概率 语义学(计算机科学) 推论 模式识别(心理学) 生成模型 图像(数学) 生成语法 机器学习 计算机视觉 自然语言处理 贝叶斯概率 程序设计语言
作者
Xin Feng,Wenjie Pei,Fengjun Li,Fanglin Chen,David Zhang,Guangming Lu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (11): 7432-7447 被引量:9
标识
DOI:10.1109/tcsvt.2022.3188169
摘要

The critical challenge of single image inpainting stems from accurate semantic inference via limited information while maintaining image quality. Typical methods for semantic image inpainting train an encoder-decoder network by learning a one-to-one mapping from the corrupted image to the inpainted version. While such methods perform well on images with small corrupted regions, it is challenging for these methods to deal with images with large corrupted area due to two potential limitations. 1) Such one-to-one mapping paradigm tends to overfit each single training pair of images; 2) The inter-image prior knowledge about the general distribution patterns of visual semantics, which can be transferred across images sharing similar semantics, is not explicitly exploited. In this paper, we propose the Generative Memory-guided Semantic Reasoning Model (GM-SRM), which infers the content of corrupted regions based on not only the known regions of the corrupted image, but also the learned inter-image reasoning priors characterizing the generalizable semantic distribution patterns between similar images. In particular, the proposed GM-SRM first pre-learns a generative memory from the whole training data to explicitly learn the distribution of different semantic patterns. Then the learned memory are leveraged to retrieve the matching semantics for the current corrupted image to perform semantic reasoning during image inpainting. While the encoder-decoder network is used for guaranteeing the pixel-level content consistency, our generative priors are favorable for performing high-level semantic reasoning, which is particularly effective for inferring semantic content for large corrupted area. Extensive experiments on Paris Street View, CelebA-HQ, and Places2 benchmarks demonstrate that our GM-SRM outperforms the state-of-the-art methods for image inpainting in terms of both visual quality and quantitative metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
JamesPei应助弥淮采纳,获得10
3秒前
6秒前
7秒前
海绵宝宝发布了新的文献求助10
8秒前
8秒前
10秒前
11秒前
伶俐皮卡丘完成签到,获得积分10
11秒前
12秒前
派大星发布了新的文献求助10
12秒前
超帅大楚完成签到,获得积分10
12秒前
Owen应助彳亍采纳,获得10
13秒前
小张同学读研版完成签到,获得积分10
15秒前
huster发布了新的文献求助10
16秒前
晴栀发布了新的文献求助10
16秒前
16秒前
17秒前
酷波er应助smy采纳,获得10
17秒前
17秒前
领导范儿应助乐观青柏采纳,获得10
17秒前
热情的夏完成签到,获得积分10
19秒前
英姑应助酷小柯采纳,获得10
19秒前
geye发布了新的文献求助10
21秒前
可爱的函函应助旺旺碎采纳,获得10
21秒前
科研通AI2S应助青鸢采纳,获得10
22秒前
22秒前
22秒前
西门放狗完成签到,获得积分10
23秒前
大模型应助无心的无敌采纳,获得10
24秒前
眯眯眼的世界完成签到,获得积分10
24秒前
小二郎应助shifeng_zai采纳,获得10
24秒前
lily完成签到 ,获得积分10
25秒前
25秒前
炊饼发布了新的文献求助10
25秒前
郑万恶完成签到 ,获得积分10
26秒前
勤奋的冰淇淋完成签到 ,获得积分10
27秒前
李健应助浮浮沉沉采纳,获得10
27秒前
大聪明完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
花菁类近红外荧光染料的合成及光学性能研究 500
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812648
关于积分的说明 7895876
捐赠科研通 2471484
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112