已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Gaussian bare‐bones gradient‐based optimization: Towards mitigating the performance concerns

计算机科学 趋同(经济学) 水准点(测量) 混合算法(约束满足) 数学优化 算法 人工智能 数学 约束满足 大地测量学 概率逻辑 经济增长 经济 约束逻辑程序设计 地理
作者
Zenglin Qiao,Weifeng Shan,Nan Jiang,Ali Asghar Heidari,Huiling Chen,Yuntian Teng,Hamza Turabieh,Majdi Mafarja
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (6): 3193-3254 被引量:15
标识
DOI:10.1002/int.22658
摘要

Gradient-based optimizer (GBO) is a metaphor-free mathematic-based algorithm proposed in recent years. Encouraged by the gradient-based Newton's method, this algorithm combines with population-based evolutionary methods. The disadvantage of the traditional GBO algorithm is that the global search ability of the algorithm is too strong, and the local search ability is too weak; accordingly, it is difficult to obtain the global optimal solution efficiently. Therefore, a new improved GBO algorithm (GOMGBO) is developed to mitigate such performance concerns by introducing a Gaussian bare-bones mechanism, an opposition-based learning mechanism, and a moth spiral mechanism enhanced GBO algorithm. The proposed GOMGBO has been compared against many famous methods and improved variants on 30 benchmark functions. The experimental results show that GOMGBO has apparent advantages in convergence speed and precision. In addition, this paper analyzes the balance and diversity of the GOMGBO algorithm and compares GOMGBO with other algorithms on several engineering problems. The experimental results show that the GOMGBO algorithm is also better than the competitive algorithm in engineering problems. This study uses the GOMGBO algorithm to optimize kernel extreme learning machine (KELM), and a new GOMGBO-KELM model is proposed. The model is used to deal with four clinical disease diagnosis problems. Compared with GBO-KELM, back propagation neural network algorithm, and other models, comparative experiments show that GOMGBO-KELM has high performance in dealing with practical cases. We invite the community to investigate further our method for solving problems more efficiently with reasonable speed and efficiency. Readers of this study can refer to https://aliasgharheidari.com for any guidance about the proposed GOMGBO method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布可完成签到,获得积分10
刚刚
研友_VZG7GZ应助熬夜不秃头采纳,获得10
刚刚
WizBLue完成签到,获得积分10
4秒前
MJ完成签到 ,获得积分10
4秒前
5秒前
Leona完成签到,获得积分10
8秒前
邓博发布了新的文献求助10
9秒前
loser完成签到 ,获得积分10
10秒前
Sunwin完成签到 ,获得积分10
11秒前
11秒前
11秒前
苏姗姗发布了新的文献求助30
12秒前
开放素完成签到 ,获得积分10
12秒前
13秒前
于冷松发布了新的文献求助10
16秒前
myg123完成签到 ,获得积分10
17秒前
petrichor发布了新的文献求助10
17秒前
15860936613完成签到 ,获得积分10
18秒前
潘果果完成签到,获得积分10
20秒前
zeice完成签到 ,获得积分10
21秒前
hdx完成签到 ,获得积分10
25秒前
于冷松完成签到,获得积分10
25秒前
DD完成签到 ,获得积分10
25秒前
Hasee完成签到 ,获得积分10
26秒前
能干的山雁完成签到 ,获得积分10
26秒前
Isaac完成签到 ,获得积分10
29秒前
29秒前
29秒前
学渣本渣完成签到,获得积分10
33秒前
超帅锦程发布了新的文献求助10
35秒前
洋芋完成签到,获得积分10
35秒前
37秒前
shuyi完成签到 ,获得积分10
38秒前
张腾雕完成签到 ,获得积分10
38秒前
岁岁安完成签到,获得积分10
42秒前
42秒前
Lorin完成签到 ,获得积分10
44秒前
Artin完成签到,获得积分10
45秒前
47秒前
ding应助岁岁安采纳,获得10
47秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335171
求助须知:如何正确求助?哪些是违规求助? 2964373
关于积分的说明 8613564
捐赠科研通 2643210
什么是DOI,文献DOI怎么找? 1447252
科研通“疑难数据库(出版商)”最低求助积分说明 670587
邀请新用户注册赠送积分活动 658930