Gaussian bare‐bones gradient‐based optimization: Towards mitigating the performance concerns

计算机科学 趋同(经济学) 水准点(测量) 混合算法(约束满足) 数学优化 算法 人工智能 数学 约束满足 大地测量学 概率逻辑 经济增长 经济 约束逻辑程序设计 地理
作者
Zenglin Qiao,Weifeng Shan,Nan Jiang,Ali Asghar Heidari,Huiling Chen,Yuntian Teng,Hamza Turabieh,Majdi Mafarja
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (6): 3193-3254 被引量:15
标识
DOI:10.1002/int.22658
摘要

Gradient-based optimizer (GBO) is a metaphor-free mathematic-based algorithm proposed in recent years. Encouraged by the gradient-based Newton's method, this algorithm combines with population-based evolutionary methods. The disadvantage of the traditional GBO algorithm is that the global search ability of the algorithm is too strong, and the local search ability is too weak; accordingly, it is difficult to obtain the global optimal solution efficiently. Therefore, a new improved GBO algorithm (GOMGBO) is developed to mitigate such performance concerns by introducing a Gaussian bare-bones mechanism, an opposition-based learning mechanism, and a moth spiral mechanism enhanced GBO algorithm. The proposed GOMGBO has been compared against many famous methods and improved variants on 30 benchmark functions. The experimental results show that GOMGBO has apparent advantages in convergence speed and precision. In addition, this paper analyzes the balance and diversity of the GOMGBO algorithm and compares GOMGBO with other algorithms on several engineering problems. The experimental results show that the GOMGBO algorithm is also better than the competitive algorithm in engineering problems. This study uses the GOMGBO algorithm to optimize kernel extreme learning machine (KELM), and a new GOMGBO-KELM model is proposed. The model is used to deal with four clinical disease diagnosis problems. Compared with GBO-KELM, back propagation neural network algorithm, and other models, comparative experiments show that GOMGBO-KELM has high performance in dealing with practical cases. We invite the community to investigate further our method for solving problems more efficiently with reasonable speed and efficiency. Readers of this study can refer to https://aliasgharheidari.com for any guidance about the proposed GOMGBO method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧伤的白猫完成签到,获得积分10
刚刚
1秒前
bling发布了新的文献求助10
1秒前
雪酪芋泥球完成签到 ,获得积分10
2秒前
slow发布了新的文献求助10
2秒前
慕青应助景清采纳,获得10
2秒前
灯飞发布了新的文献求助10
3秒前
meta完成签到,获得积分10
4秒前
Una完成签到,获得积分10
4秒前
4秒前
5秒前
布鲁爱思完成签到,获得积分10
6秒前
香蕉觅云应助仔仔仔平采纳,获得10
7秒前
君君完成签到,获得积分10
8秒前
apollo2002发布了新的文献求助10
8秒前
8秒前
友好的匪完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
10秒前
crazy发布了新的文献求助10
10秒前
lv发布了新的文献求助50
12秒前
12秒前
13秒前
13秒前
LWJ发布了新的文献求助10
13秒前
13秒前
宋晴完成签到,获得积分10
14秒前
顺顺发布了新的文献求助10
15秒前
15秒前
bling完成签到,获得积分10
16秒前
景清发布了新的文献求助10
16秒前
蒋念寒发布了新的文献求助10
16秒前
16秒前
cola完成签到,获得积分10
17秒前
峥2发布了新的文献求助10
18秒前
Tina应助牛文文采纳,获得10
19秒前
Ryan发布了新的文献求助50
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452