CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

卷积神经网络 计算机科学 变压器 计算机视觉 人工智能 图像分割 分割 地点 模式识别(心理学) 电压 语言学 量子力学 物理 哲学
作者
Yutong Xie,Jianpeng Zhang,Chunhua Shen,Yong Xia
出处
期刊:Lecture Notes in Computer Science 卷期号:: 171-180 被引量:342
标识
DOI:10.1007/978-3-030-87199-4_16
摘要

Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation. The convolutional operations used in these networks, however, inevitably have limitations in modeling the long-range dependency due to their inductive bias of locality and weight sharing. Although Transformer was born to address this issue, it suffers from extreme computational and spatial complexities in processing high-resolution 3D feature maps. In this paper, we propose a novel framework that efficiently bridges a Convolutional neural network and a Transformer (CoTr) for accurate 3D medical image segmentation. Under this framework, the CNN is constructed to extract feature representations and an efficient deformable Transformer (DeTrans) is built to model the long-range dependency on the extracted feature maps. Different from the vanilla Transformer which treats all image positions equally, our DeTrans pays attention only to a small set of key positions by introducing the deformable self-attention mechanism. Thus, the computational and spatial complexities of DeTrans have been greatly reduced, making it possible to process the multi-scale and high-resolution feature maps, which are usually of paramount importance for image segmentation. We conduct an extensive evaluation on the Multi-Atlas Labeling Beyond the Cranial Vault (BCV) dataset that covers 11 major human organs. The results indicate that our CoTr leads to a substantial performance improvement over other CNN-based, transformer-based, and hybrid methods on the 3D multi-organ segmentation task. Code is available at: https://github.com/YtongXie/CoTr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
A苏苏苏发布了新的文献求助10
2秒前
昌昌完成签到,获得积分10
3秒前
h3xxxmax完成签到,获得积分10
3秒前
5秒前
5秒前
小潘完成签到 ,获得积分10
7秒前
linmu发布了新的文献求助10
9秒前
11秒前
丘比特应助hao采纳,获得10
11秒前
吴旭东发布了新的文献求助10
11秒前
是然宝啊完成签到,获得积分10
13秒前
adam完成签到,获得积分10
13秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
酷酷草莓应助科研通管家采纳,获得20
14秒前
rong完成签到 ,获得积分10
14秒前
田様应助zhiyume采纳,获得10
16秒前
20秒前
陆千万完成签到,获得积分20
20秒前
21秒前
dan1029发布了新的文献求助20
21秒前
椒盐柠檬茶完成签到,获得积分10
23秒前
Ogai完成签到,获得积分10
23秒前
超级拖延症完成签到 ,获得积分10
23秒前
精明朋友发布了新的文献求助10
25秒前
浅黑色饕餮完成签到,获得积分10
25秒前
shisui完成签到,获得积分10
27秒前
翊星完成签到,获得积分10
30秒前
Cary完成签到 ,获得积分10
34秒前
科研通AI2S应助二三采纳,获得10
38秒前
HYH完成签到 ,获得积分10
39秒前
yoqalux完成签到,获得积分10
44秒前
45秒前
46秒前
拼搏的思萱完成签到 ,获得积分10
47秒前
GOAT完成签到,获得积分10
47秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231168
求助须知:如何正确求助?哪些是违规求助? 2878307
关于积分的说明 8205681
捐赠科研通 2545770
什么是DOI,文献DOI怎么找? 1375365
科研通“疑难数据库(出版商)”最低求助积分说明 647390
邀请新用户注册赠送积分活动 622448