CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

卷积神经网络 计算机科学 变压器 计算机视觉 人工智能 图像分割 分割 地点 模式识别(心理学) 电压 语言学 量子力学 物理 哲学
作者
Yutong Xie,Jianpeng Zhang,Chunhua Shen,Yong Xia
出处
期刊:Lecture Notes in Computer Science 卷期号:: 171-180 被引量:403
标识
DOI:10.1007/978-3-030-87199-4_16
摘要

Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation. The convolutional operations used in these networks, however, inevitably have limitations in modeling the long-range dependency due to their inductive bias of locality and weight sharing. Although Transformer was born to address this issue, it suffers from extreme computational and spatial complexities in processing high-resolution 3D feature maps. In this paper, we propose a novel framework that efficiently bridges a Convolutional neural network and a Transformer (CoTr) for accurate 3D medical image segmentation. Under this framework, the CNN is constructed to extract feature representations and an efficient deformable Transformer (DeTrans) is built to model the long-range dependency on the extracted feature maps. Different from the vanilla Transformer which treats all image positions equally, our DeTrans pays attention only to a small set of key positions by introducing the deformable self-attention mechanism. Thus, the computational and spatial complexities of DeTrans have been greatly reduced, making it possible to process the multi-scale and high-resolution feature maps, which are usually of paramount importance for image segmentation. We conduct an extensive evaluation on the Multi-Atlas Labeling Beyond the Cranial Vault (BCV) dataset that covers 11 major human organs. The results indicate that our CoTr leads to a substantial performance improvement over other CNN-based, transformer-based, and hybrid methods on the 3D multi-organ segmentation task. Code is available at: https://github.com/YtongXie/CoTr.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
JamesPei应助落后紫夏采纳,获得10
2秒前
2秒前
3秒前
llullalla发布了新的文献求助10
4秒前
深情安青应助嗡嗡大王采纳,获得10
4秒前
Liiiii完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
天真的铭完成签到,获得积分10
6秒前
科研通AI2S应助大可采纳,获得10
6秒前
suiyi发布了新的文献求助10
6秒前
Hello应助酷酷笑容采纳,获得10
7秒前
谌倪完成签到 ,获得积分10
7秒前
直率的冰海完成签到,获得积分10
7秒前
Maria完成签到,获得积分10
7秒前
李双艳发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
桐桐应助熬夜的桃子采纳,获得10
8秒前
Littlerain~发布了新的文献求助10
8秒前
jiayoujijin发布了新的文献求助10
9秒前
9秒前
赵冉完成签到 ,获得积分10
9秒前
ling2001完成签到,获得积分10
10秒前
10秒前
10秒前
Lucas应助保护萝卜采纳,获得10
10秒前
xiaoyuun发布了新的文献求助10
11秒前
assure完成签到,获得积分10
11秒前
大海完成签到,获得积分10
11秒前
贡菜选手完成签到,获得积分10
11秒前
月儿发布了新的文献求助10
11秒前
kingwill应助Maria采纳,获得20
12秒前
CC2333完成签到,获得积分10
12秒前
陈豆豆发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953707
求助须知:如何正确求助?哪些是违规求助? 3499536
关于积分的说明 11096135
捐赠科研通 3230090
什么是DOI,文献DOI怎么找? 1785865
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801479