Machine learning identifies the independent role of dysplasia in the prediction of response to chemotherapy in AML

发育不良 净现值1 医学 诱导化疗 血液学 逻辑回归 肿瘤科 内科学 单体 多元分析 化疗 生物 髓系白血病 基因 遗传学 核型 染色体
作者
Matthieu Duchmann,Orianne Wagner‐Ballon,Thomas D. Boyer,Meyling Cheok,Élise Fournier,Estelle Guérin,Laurène Fenwarth,Bouchra Badaoui,Nicolas Freynet,Emmanuel Benayoun,Daniel Lusina,Isabel García,Claude Gardin,Pierre Fenaux,Cécile Pautas,Bruno Quesnel,Pascal Turlure,Christine Terré,Xavier Thomas,Juliette Lambert,Aline Renneville,Claude Preudhomme,Hervé Dombret,Raphaël Itzykson,Thomas Cluzeau
出处
期刊:Leukemia [Springer Nature]
卷期号:36 (3): 656-663 被引量:7
标识
DOI:10.1038/s41375-021-01435-7
摘要

The independent prognostic impact of specific dysplastic features in acute myeloid leukemia (AML) remains controversial and may vary between genomic subtypes. We apply a machine learning framework to dissect the relative contribution of centrally reviewed dysplastic features and oncogenetics in 190 patients with de novo AML treated in ALFA clinical trials. One hundred and thirty-five (71%) patients achieved complete response after the first induction course (CR). Dysgranulopoiesis, dyserythropoiesis and dysmegakaryopoiesis were assessable in 84%, 83% and 63% patients, respectively. Multi-lineage dysplasia was present in 27% of assessable patients. Micromegakaryocytes (q = 0.01), hypolobulated megakaryocytes (q = 0.08) and hyposegmented granulocytes (q = 0.08) were associated with higher ELN-2017 risk. Using a supervised learning algorithm, the relative importance of morphological variables (34%) for the prediction of CR was higher than demographic (5%), clinical (2%), cytogenetic (25%), molecular (29%), and treatment (5%) variables. Though dysplasias had limited predictive impact on survival, a multivariate logistic regression identified the presence of hypolobulated megakaryocytes (p = 0.014) and micromegakaryocytes (p = 0.035) as predicting lower CR rates, independently of monosomy 7 (p = 0.013), TP53 (p = 0.004), and NPM1 mutations (p = 0.025). Assessment of these specific dysmegakarypoiesis traits, for which we identify a transcriptomic signature, may thus guide treatment allocation in AML.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
星辰大海应助Wqian采纳,获得10
6秒前
6秒前
10秒前
18秒前
19秒前
科目三应助朴素的松采纳,获得10
20秒前
Jodie发布了新的文献求助10
23秒前
23秒前
Heinrich完成签到,获得积分10
24秒前
Lucas应助inter采纳,获得10
28秒前
无极微光应助科研通管家采纳,获得20
31秒前
Orange应助科研通管家采纳,获得10
31秒前
Verity应助科研通管家采纳,获得10
31秒前
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
31秒前
苏新天完成签到 ,获得积分10
31秒前
搜集达人应助科研通管家采纳,获得10
31秒前
Liangang应助科研通管家采纳,获得10
31秒前
31秒前
搜集达人应助科研通管家采纳,获得10
31秒前
huanger应助科研通管家采纳,获得10
31秒前
桐桐应助科研通管家采纳,获得10
32秒前
斯文败类应助科研通管家采纳,获得10
32秒前
小新应助科研通管家采纳,获得10
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得10
32秒前
斯文败类应助科研通管家采纳,获得10
32秒前
一叶知秋应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
34秒前
跳跃的翼完成签到,获得积分10
37秒前
健忘可愁完成签到,获得积分10
38秒前
跳跃的翼发布了新的文献求助10
39秒前
40秒前
无花果应助加百莉采纳,获得10
43秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550