Micro–Computed Tomography–Guided Artificial Intelligence for Pulp Cavity and Tooth Segmentation on Cone-beam Computed Tomography

豪斯多夫距离 基本事实 锥束ct 数据集 Sørensen–骰子系数 数学 计算机断层摄影术 图像分割 人工智能 分割 核医学 计算机科学 模式识别(心理学) 医学 放射科
作者
Xiang Lin,Yujie Fu,Genqiang Ren,Xiaoyu Yang,Wei Duan,Yufei Chen,Qi Zhang
出处
期刊:Journal of Endodontics [Elsevier BV]
卷期号:47 (12): 1933-1941 被引量:36
标识
DOI:10.1016/j.joen.2021.09.001
摘要

This study proposes a novel data pipeline based on micro-computed tomographic (micro-CT) data for training the U-Net network to realize the automatic and accurate segmentation of the pulp cavity and tooth on cone-beam computed tomographic (CBCT) images.We collected CBCT data and micro-CT data of 30 teeth. CBCT data were processed and transformed into small field of view and high-resolution CBCT images of each tooth. Twenty-five sets were randomly assigned to the training set and the remaining 5 sets to the test set. We used 2 data pipelines for U-Net network training: one manually labeled by an endodontic specialist as the control group and one processed from the micro-CT data as the experimental group. The 3-dimensional models constructed using micro-CT data in the test set were taken as the ground truth. The Dice similarity coefficient, precision rate, recall rate, average symmetric surface distance, Hausdorff distance, and morphologic analysis were used for performance evaluation.The segmentation accuracy of the experimental group measured by the Dice similarity coefficient, precision rate, recall rate, average symmetric surface distance, and Hausdorff distance were 96.20% ± 0.58%, 97.31% ± 0.38%, 95.11% ± 0.97%, 0.09 ± 0.01 mm, and 1.54 ± 0.51 mm in the tooth and 86.75% ± 2.42%, 84.45% ± 7.77%, 89.94% ± 4.56%, 0.08 ± 0.02 mm, and 1.99 ± 0.67 mm in the pulp cavity, respectively, which were better than the control group. Morphologic analysis suggested the segmentation results of the experimental group were better than those of the control group.This study proposed an automatic and accurate approach for tooth and pulp cavity segmentation on CBCT images, which can be applied in research and clinical tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
okbasf完成签到,获得积分10
1秒前
周先生完成签到,获得积分10
1秒前
单纯的盼雁完成签到,获得积分10
3秒前
Leisure_Lee完成签到,获得积分10
4秒前
4秒前
xiaochen发布了新的文献求助10
4秒前
tao_blue完成签到,获得积分10
4秒前
852应助阿七采纳,获得10
5秒前
周先生发布了新的文献求助10
5秒前
夜雪完成签到,获得积分10
5秒前
5秒前
文文完成签到,获得积分10
5秒前
6秒前
舒克完成签到,获得积分10
6秒前
无极微光应助负阳氧采纳,获得20
6秒前
6秒前
活力曼梅完成签到,获得积分10
7秒前
Vermouth关注了科研通微信公众号
7秒前
萌兰134发布了新的文献求助20
9秒前
英俊的铭应助jie采纳,获得10
9秒前
一个好人完成签到,获得积分10
9秒前
srh完成签到,获得积分20
11秒前
11秒前
去2发布了新的文献求助10
11秒前
许蹦跶完成签到,获得积分10
11秒前
未来星发布了新的文献求助30
11秒前
12秒前
凉小远完成签到,获得积分10
12秒前
liningcen完成签到,获得积分10
12秒前
自由自在完成签到,获得积分10
14秒前
14秒前
浩然完成签到,获得积分10
14秒前
16秒前
16秒前
夜雪发布了新的文献求助10
16秒前
16秒前
SuperYing发布了新的文献求助10
16秒前
深情安青应助刘肉干采纳,获得10
16秒前
Diamond完成签到 ,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012193
求助须知:如何正确求助?哪些是违规求助? 4253582
关于积分的说明 13254590
捐赠科研通 4056325
什么是DOI,文献DOI怎么找? 2218635
邀请新用户注册赠送积分活动 1228299
关于科研通互助平台的介绍 1150728