Micro–Computed Tomography–Guided Artificial Intelligence for Pulp Cavity and Tooth Segmentation on Cone-beam Computed Tomography

豪斯多夫距离 基本事实 锥束ct 数据集 Sørensen–骰子系数 数学 计算机断层摄影术 图像分割 人工智能 分割 核医学 计算机科学 模式识别(心理学) 医学 放射科
作者
Xiang Lin,Yujie Fu,Genqiang Ren,Xiaoyu Yang,Wei Duan,Yufei Chen,Qi Zhang
出处
期刊:Journal of Endodontics [Elsevier]
卷期号:47 (12): 1933-1941 被引量:47
标识
DOI:10.1016/j.joen.2021.09.001
摘要

This study proposes a novel data pipeline based on micro-computed tomographic (micro-CT) data for training the U-Net network to realize the automatic and accurate segmentation of the pulp cavity and tooth on cone-beam computed tomographic (CBCT) images.We collected CBCT data and micro-CT data of 30 teeth. CBCT data were processed and transformed into small field of view and high-resolution CBCT images of each tooth. Twenty-five sets were randomly assigned to the training set and the remaining 5 sets to the test set. We used 2 data pipelines for U-Net network training: one manually labeled by an endodontic specialist as the control group and one processed from the micro-CT data as the experimental group. The 3-dimensional models constructed using micro-CT data in the test set were taken as the ground truth. The Dice similarity coefficient, precision rate, recall rate, average symmetric surface distance, Hausdorff distance, and morphologic analysis were used for performance evaluation.The segmentation accuracy of the experimental group measured by the Dice similarity coefficient, precision rate, recall rate, average symmetric surface distance, and Hausdorff distance were 96.20% ± 0.58%, 97.31% ± 0.38%, 95.11% ± 0.97%, 0.09 ± 0.01 mm, and 1.54 ± 0.51 mm in the tooth and 86.75% ± 2.42%, 84.45% ± 7.77%, 89.94% ± 4.56%, 0.08 ± 0.02 mm, and 1.99 ± 0.67 mm in the pulp cavity, respectively, which were better than the control group. Morphologic analysis suggested the segmentation results of the experimental group were better than those of the control group.This study proposed an automatic and accurate approach for tooth and pulp cavity segmentation on CBCT images, which can be applied in research and clinical tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逆光完成签到 ,获得积分20
3秒前
12发布了新的文献求助10
3秒前
初见发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
芝儿完成签到 ,获得积分10
6秒前
6秒前
6秒前
阔达的乌冬面完成签到,获得积分10
6秒前
从容的妙芹完成签到,获得积分20
6秒前
jupyter发布了新的文献求助10
6秒前
彭于晏应助怕孤单的天荷采纳,获得10
7秒前
Paperduoduo完成签到,获得积分10
7秒前
7秒前
除了我都是猪完成签到,获得积分20
8秒前
8秒前
英姑应助佘尉采纳,获得10
8秒前
10秒前
NexusExplorer应助水123采纳,获得10
10秒前
110o发布了新的文献求助10
11秒前
合欢发布了新的文献求助10
12秒前
forever完成签到,获得积分10
13秒前
褚子静发布了新的文献求助10
13秒前
嘿嘿发布了新的文献求助10
13秒前
12完成签到,获得积分10
13秒前
大个应助舒服的又菱采纳,获得10
13秒前
14秒前
xu给xu的求助进行了留言
14秒前
番茄大王开心心完成签到,获得积分10
14秒前
15秒前
forever发布了新的文献求助10
15秒前
15秒前
xiaos完成签到,获得积分10
16秒前
17秒前
希望天下0贩的0应助李123采纳,获得10
17秒前
深情安青应助李秉烛采纳,获得10
20秒前
平淡的懿轩完成签到,获得积分10
20秒前
20秒前
yu完成签到,获得积分10
20秒前
Gabriel发布了新的文献求助10
20秒前
夏晴晴完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601299
求助须知:如何正确求助?哪些是违规求助? 4686815
关于积分的说明 14846229
捐赠科研通 4680459
什么是DOI,文献DOI怎么找? 2539291
邀请新用户注册赠送积分活动 1506167
关于科研通互助平台的介绍 1471283