Micro–Computed Tomography–Guided Artificial Intelligence for Pulp Cavity and Tooth Segmentation on Cone-beam Computed Tomography

豪斯多夫距离 基本事实 锥束ct 数据集 Sørensen–骰子系数 数学 计算机断层摄影术 图像分割 人工智能 分割 核医学 计算机科学 模式识别(心理学) 医学 放射科
作者
Xiang Lin,Yujie Fu,Genqiang Ren,Xiaoyu Yang,Wei Duan,Yufei Chen,Qi Zhang
出处
期刊:Journal of Endodontics [Elsevier BV]
卷期号:47 (12): 1933-1941 被引量:36
标识
DOI:10.1016/j.joen.2021.09.001
摘要

This study proposes a novel data pipeline based on micro-computed tomographic (micro-CT) data for training the U-Net network to realize the automatic and accurate segmentation of the pulp cavity and tooth on cone-beam computed tomographic (CBCT) images.We collected CBCT data and micro-CT data of 30 teeth. CBCT data were processed and transformed into small field of view and high-resolution CBCT images of each tooth. Twenty-five sets were randomly assigned to the training set and the remaining 5 sets to the test set. We used 2 data pipelines for U-Net network training: one manually labeled by an endodontic specialist as the control group and one processed from the micro-CT data as the experimental group. The 3-dimensional models constructed using micro-CT data in the test set were taken as the ground truth. The Dice similarity coefficient, precision rate, recall rate, average symmetric surface distance, Hausdorff distance, and morphologic analysis were used for performance evaluation.The segmentation accuracy of the experimental group measured by the Dice similarity coefficient, precision rate, recall rate, average symmetric surface distance, and Hausdorff distance were 96.20% ± 0.58%, 97.31% ± 0.38%, 95.11% ± 0.97%, 0.09 ± 0.01 mm, and 1.54 ± 0.51 mm in the tooth and 86.75% ± 2.42%, 84.45% ± 7.77%, 89.94% ± 4.56%, 0.08 ± 0.02 mm, and 1.99 ± 0.67 mm in the pulp cavity, respectively, which were better than the control group. Morphologic analysis suggested the segmentation results of the experimental group were better than those of the control group.This study proposed an automatic and accurate approach for tooth and pulp cavity segmentation on CBCT images, which can be applied in research and clinical tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经的真发布了新的文献求助10
刚刚
091完成签到 ,获得积分10
刚刚
bkagyin应助xuxu采纳,获得10
1秒前
ybyb完成签到,获得积分10
1秒前
CZY完成签到,获得积分10
1秒前
汉堡包应助zxh采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
ATTENTION完成签到,获得积分10
3秒前
Aqua发布了新的文献求助10
3秒前
vogo7发布了新的文献求助10
3秒前
小二郎应助密密麻麻蒙采纳,获得10
4秒前
4秒前
5秒前
wyp关注了科研通微信公众号
5秒前
托塔李天后完成签到,获得积分10
5秒前
Zeng发布了新的文献求助10
6秒前
lailight完成签到,获得积分10
6秒前
科研钉完成签到,获得积分10
6秒前
6秒前
7秒前
科小浩发布了新的文献求助10
7秒前
小豆包完成签到 ,获得积分10
8秒前
香氛完成签到,获得积分10
9秒前
科研钉发布了新的文献求助10
9秒前
10秒前
10秒前
球球的铲屎官应助a成采纳,获得10
10秒前
薄饼哥丶发布了新的文献求助10
10秒前
张童鞋发布了新的文献求助20
11秒前
烟花应助小虫子采纳,获得10
11秒前
灯儿发布了新的文献求助30
11秒前
11秒前
无花果应助涛子11111采纳,获得10
11秒前
11秒前
明亮哈密瓜完成签到,获得积分10
12秒前
13秒前
hkh发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009905
求助须知:如何正确求助?哪些是违规求助? 3549896
关于积分的说明 11304149
捐赠科研通 3284441
什么是DOI,文献DOI怎么找? 1810658
邀请新用户注册赠送积分活动 886424
科研通“疑难数据库(出版商)”最低求助积分说明 811406