CO2 absorption performance in advanced water-lean diamine solvents

二胺 水溶液 化学 解吸 吸水率 溶剂 粘度 吸收(声学) 溶解度 化学工程 有机化学 材料科学 吸附 工程类 复合材料
作者
Yanjie Xu,Tao Wang,Han‐Qing Yu,Hai Yu,Mengxiang Fang,Graeme Puxty
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:425: 131410-131410 被引量:11
标识
DOI:10.1016/j.cej.2021.131410
摘要

In an effort to reduce energy penalties, a range of advanced water-lean solutions blended from one of 8 diamines, an organic solvent diluent and water, were screened. The diamines N,N-dimethyl-1,3-propanediamine and N,N-dimethyl-1,2-ethanediamine with one primary and one tertiary amino group remain homogenous during CO2 uptake with the addition of cosolvents (1-methyl-2-pyrrolidinone or sulfolane) and are further investigated for absorption and desorption performance compared with their corresponding aqueous solutions. Water-lean solutions with different water concentrations are tested to explain the impact of water content on the solution performance. Physical properties such as density and viscosity are also measured for a versatile evaluation. The results show that diamine water-lean solutions obtain low viscosity, preferable cyclic capacities and rapid absorption and desorption rates. ENH-5% H2O (mass ratio DMEDA: NMP: H2O = 3:6.5:0.5) shows the most competitive advantages with comparable viscosity (1.49 mPa∙S at 313 K) to aqueous MEA-H2O and a 140% improvement in cyclic capacity. Four-fold higher desorption rate is gained ESH-5%H2O (mass ratio DMEDA: SFL: H2O = 3:6.5:0.5) compared with MEA-H2O. Considerable reduction in energy penalties is expected to be achieved in diamine water-lean solutions. In addition, the equilibrium solubility of diamine water-lean solutions also shows potential for industrial application due to their sensitivity to CO2 partial pressure in contrast with aqueous solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
SandyH完成签到,获得积分10
刚刚
Jack完成签到,获得积分10
刚刚
白露完成签到 ,获得积分10
刚刚
Owen应助默默柚子采纳,获得10
1秒前
1秒前
隐形的易巧完成签到 ,获得积分10
1秒前
2秒前
Ava应助Autoimmune采纳,获得10
2秒前
科研通AI5应助多变的卡宾采纳,获得10
2秒前
Citrus发布了新的文献求助10
3秒前
科目三应助莉莉采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
惠惠发布了新的文献求助10
4秒前
深夜看文献的小刘完成签到,获得积分10
4秒前
菊菊发布了新的文献求助10
4秒前
4秒前
猪猪发布了新的文献求助10
5秒前
胖豆发布了新的文献求助10
5秒前
巴啦啦能量完成签到 ,获得积分10
5秒前
6秒前
完美凝海发布了新的文献求助30
6秒前
科研菜鸟发布了新的文献求助10
6秒前
升学顺利身体健康完成签到,获得积分10
7秒前
7秒前
爱学习发布了新的文献求助10
7秒前
cc发布了新的文献求助10
8秒前
533完成签到,获得积分20
8秒前
科研通AI5应助yx采纳,获得10
8秒前
9秒前
koi发布了新的文献求助10
9秒前
浦肯野应助湖月照我影采纳,获得30
9秒前
9秒前
陈博士完成签到,获得积分10
10秒前
Citrus完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762