Iterative method for the calculation of parametric images from dynamic brain PET images

体素 迭代重建 规范化(社会学) 参数统计 核医学 计算机科学 迭代法 人工智能 统计参数映射 算法 数学 模式识别(心理学) 磁共振成像 医学 放射科 统计 人类学 社会学
作者
Zixiang Chen,Chenwei Li,Tao Sun,Kun Li,Xiao Cui,Ying Wang,Yanhua Duan,Zhaoping Cheng,Dong Liang,Xin Liu,Yongfeng Yang,Hairong Zheng,Zhanli Hu
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine]
卷期号:62: 1443-1443
摘要

1443 Objectives: Image noise in dynamic PET image series may cause dataanomaly in temporal dimension that will affect the parametric imagingprocess using Patlak fitting. Our work is to propose an iterative method fordynamic PET parametric image calculation, which is effective for eliminatingthe affection of data anomaly in temporal dimension and provide a morereliable result of parametric image calculation. Methods: Patient Data Twopatients have been enrolled in this study (68 years old, 62.7kg (patient 1)and 63 years old, 56.6 kg (patient 2), both are male) were used for thevalidation of the proposed method. The dynamic PET examinatio(uEXPLORER, United Imaging Inc of 1-hour for all patients have beenperformed immediately after an intravenous injection of 18F-FDG with thedose of 0.1 mCi/kg. Such data have been divided into 28 frames (5s × 4, 10s× 4, 30s × 2, 60s × 8 and 300s × 10), and the applied reconstruction methodis 3D TOF list-mode ordered-subsets expectation maximization (OSEM)algorithm combining necessary corrections including normalization, scatter,attenuation and random. Image were reconstructed into a 256 × 256 × 673matrix with 2.53-mm cubic voxels; Parametric analysis were performedbased on the brain regions images while the blood input functions wereextracted from a 4 × 4 × 4 VOI in the thoracic aorta. Totally 19 and 23effective frames, started from the peak value of the blood input functions ofthe two scans, respectively, were included in the analyzed dynamic imageseries. Patlak fitting and iterative calculation of Ki and b were based on thelast 10 frames of the image series. Algorithm Iterative method was used forcalculating the parametric images Ki and b based on a linear controllingequation relating the dynamic pixel radioactive concentrations and theobjective metabolic parameters. Two integral vectors calculated from theblood input function were Kronecker multiplied with unit matrices and thenregarded as the coefficient matrices of the linear controlling equation.Basically, expectation-maximization (EM) algorithm were used for iterativeupdating of the objective parametric images. Comparison Resultantparametric images given by Patlak fitting and the proposed iterative methodwere compared to each other directly. And for the pixels where evidentdifferent Ki values appear, Patlak plots were given for the demonstration ofthe reason for the distinction. Results: Overall speaking, Patlak fitting and the proposed iterative methodgive resultant parametric images that are comparable to each other.However, difference images between Ki images from these methods showsthat there exist pixels that Patlak fitting and iterative method give differentestimated physiological rate values. The comparison of the Ki and b valueson the Patlak plot of these pixels tells that the abnormal data point thatdirectly affect the Patlak fitting result will not seriously hinder our iterativemethod from getting reliable Ki values. Conclusions: The proposed iterative method for parametric imagescalculation from dynamic PET data is a superior method compared to directPatlak fitting since the fortuitous data anomaly in temporal dimension that willsignificantly affect the direct fitting can be eliminated, and more reliableparametric images can be expected.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饭团的老父亲完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
红叶完成签到,获得积分10
2秒前
斯文败类应助99采纳,获得10
2秒前
初心完成签到 ,获得积分10
3秒前
3秒前
niuniu顺利毕业完成签到 ,获得积分10
5秒前
甜蜜的荟完成签到,获得积分10
6秒前
CLY发布了新的文献求助10
6秒前
aa完成签到,获得积分10
6秒前
9秒前
聪明小丸子完成签到,获得积分10
9秒前
时尚中二完成签到,获得积分10
12秒前
燕燕完成签到,获得积分10
13秒前
爱笑的千寻完成签到,获得积分10
13秒前
一个小胖子完成签到,获得积分10
14秒前
zxt完成签到,获得积分10
16秒前
16秒前
甜甜圈完成签到 ,获得积分10
16秒前
kehe完成签到 ,获得积分10
16秒前
fuluyuzhe_668完成签到,获得积分10
17秒前
叶颤发布了新的文献求助20
17秒前
量子星尘发布了新的文献求助10
18秒前
Alex完成签到,获得积分10
18秒前
win完成签到 ,获得积分10
18秒前
田様应助大饼饼饼采纳,获得30
19秒前
吴旭东发布了新的文献求助10
20秒前
花卷完成签到,获得积分10
20秒前
熬夜波比应助yydy采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
小杨完成签到,获得积分10
21秒前
九号机完成签到 ,获得积分10
22秒前
淡定白枫完成签到,获得积分10
22秒前
kehe!完成签到 ,获得积分0
22秒前
luo完成签到 ,获得积分10
22秒前
23秒前
不爱看文献头疼完成签到,获得积分10
24秒前
淡定的棒球完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071