亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-Learning Approach to the Self-Piercing Riveting of Various Combinations of Steel and Aluminum Sheets

铆钉 材料科学 拉深 深度学习 接头(建筑物) 极限抗拉强度 计算机科学 模数 人工智能 机械工程 复合材料 结构工程 工程类
作者
Hyun Kyung Kim,Sehyeok Oh,Keong-Hwan Cho,Dong-Hyuck Kam,Hyungson Ki
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 79316-79325 被引量:7
标识
DOI:10.1109/access.2021.3084296
摘要

Deep-learning architectures were employed to simulate the self-piercing riveting process of steel and aluminum sheets and predict the cross-sectional joint shape with a zero head height. Four steels (SPRC440, SPFC590DP, GI780DP, SGAFC980Y) and three aluminum alloys (Al5052, Al5754, Al5083) were considered as the materials for the top and bottom sheets, respectively. The key objective was to consider the material properties of these metal sheets (Young's modulus, Poisson's ratio, and ultimate tensile strength) in a deep-learning framework. Two deep-learning models were considered: In the first model, the properties of the top and bottom sheets were adopted as the scalar inputs, and in the second model, the three properties were graphically assigned to the three channels of the input image. Both the models generated a segmentation image of the cross-section. To assess the accuracy of the predictions, the generated images were compared with ground truth images, and three key geometrical factors (interlock, bottom thickness, and effective length) were measured. The first and second models achieved prediction accuracies of 91.95% and 92.22%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助ceeray23采纳,获得20
2秒前
7秒前
17秒前
朱可欣完成签到 ,获得积分10
28秒前
wanci应助科研通管家采纳,获得10
28秒前
小二郎应助科研通管家采纳,获得10
28秒前
酷波er应助CC采纳,获得20
51秒前
1分钟前
刘哈哈完成签到 ,获得积分10
1分钟前
CC发布了新的文献求助20
1分钟前
ceeray23发布了新的文献求助20
1分钟前
乐乐应助ceeray23采纳,获得20
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI6应助CC采纳,获得10
2分钟前
搜集达人应助科研通管家采纳,获得10
2分钟前
和风完成签到 ,获得积分10
2分钟前
俏以完成签到,获得积分10
3分钟前
体贴静竹完成签到 ,获得积分10
3分钟前
3分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
清晨仪仪发布了新的文献求助10
4分钟前
4分钟前
朴素尔阳发布了新的文献求助10
4分钟前
4分钟前
webmaster完成签到,获得积分10
4分钟前
向东是大海完成签到,获得积分10
4分钟前
5分钟前
CC发布了新的文献求助10
5分钟前
万能图书馆应助清晨仪仪采纳,获得30
5分钟前
Yihan完成签到,获得积分10
5分钟前
科研王者发布了新的文献求助10
6分钟前
老万的小迷弟完成签到,获得积分10
6分钟前
JoeyJin完成签到,获得积分10
6分钟前
我是老大应助科研王者采纳,获得10
6分钟前
6分钟前
yeeeee发布了新的文献求助10
7分钟前
ttkx发布了新的文献求助10
7分钟前
CipherSage应助yeeeee采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622241
求助须知:如何正确求助?哪些是违规求助? 4707275
关于积分的说明 14938986
捐赠科研通 4769808
什么是DOI,文献DOI怎么找? 2552255
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475053