Deep-Learning Approach to the Self-Piercing Riveting of Various Combinations of Steel and Aluminum Sheets

铆钉 材料科学 拉深 深度学习 接头(建筑物) 极限抗拉强度 计算机科学 模数 人工智能 机械工程 复合材料 结构工程 工程类
作者
Hyun Kyung Kim,Sehyeok Oh,Keong-Hwan Cho,Dong-Hyuck Kam,Hyungson Ki
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 79316-79325 被引量:7
标识
DOI:10.1109/access.2021.3084296
摘要

Deep-learning architectures were employed to simulate the self-piercing riveting process of steel and aluminum sheets and predict the cross-sectional joint shape with a zero head height. Four steels (SPRC440, SPFC590DP, GI780DP, SGAFC980Y) and three aluminum alloys (Al5052, Al5754, Al5083) were considered as the materials for the top and bottom sheets, respectively. The key objective was to consider the material properties of these metal sheets (Young's modulus, Poisson's ratio, and ultimate tensile strength) in a deep-learning framework. Two deep-learning models were considered: In the first model, the properties of the top and bottom sheets were adopted as the scalar inputs, and in the second model, the three properties were graphically assigned to the three channels of the input image. Both the models generated a segmentation image of the cross-section. To assess the accuracy of the predictions, the generated images were compared with ground truth images, and three key geometrical factors (interlock, bottom thickness, and effective length) were measured. The first and second models achieved prediction accuracies of 91.95% and 92.22%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知性的胜完成签到,获得积分20
1秒前
1秒前
lzy发布了新的文献求助10
1秒前
orixero应助aabsd采纳,获得10
1秒前
1秒前
2秒前
2秒前
符又夏完成签到,获得积分10
2秒前
求助人员应助哈哈哈采纳,获得10
2秒前
3秒前
3秒前
Frozen Flame完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
虚度30年发布了新的文献求助10
4秒前
emma完成签到,获得积分10
4秒前
江睿曦发布了新的文献求助10
4秒前
魏煜佳完成签到,获得积分10
5秒前
悦椿发布了新的文献求助10
5秒前
方圆几里发布了新的文献求助10
5秒前
净铅华发布了新的文献求助10
5秒前
科研通AI6应助0406采纳,获得10
5秒前
Tal发布了新的文献求助10
5秒前
mi发布了新的文献求助20
6秒前
Jasper应助歪比八不采纳,获得10
6秒前
诚心桐完成签到,获得积分10
6秒前
田田发布了新的文献求助10
6秒前
7秒前
无极微光应助newgeno2003采纳,获得20
7秒前
ccm应助不倦采纳,获得50
7秒前
7秒前
zzzqqq完成签到,获得积分10
7秒前
7秒前
隐形曼青应助psycho采纳,获得10
8秒前
8秒前
解惑大师发布了新的文献求助10
8秒前
在水一方应助dagongren采纳,获得10
8秒前
9秒前
sakiecon完成签到,获得积分10
9秒前
cyf发布了新的文献求助10
9秒前
liao应助执着期待采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5517082
求助须知:如何正确求助?哪些是违规求助? 4610020
关于积分的说明 14519461
捐赠科研通 4547040
什么是DOI,文献DOI怎么找? 2491480
邀请新用户注册赠送积分活动 1473098
关于科研通互助平台的介绍 1444991