Deep-Learning Approach to the Self-Piercing Riveting of Various Combinations of Steel and Aluminum Sheets

铆钉 材料科学 拉深 深度学习 接头(建筑物) 极限抗拉强度 计算机科学 模数 人工智能 机械工程 复合材料 结构工程 工程类
作者
Hyun Kyung Kim,Sehyeok Oh,Keong-Hwan Cho,Dong-Hyuck Kam,Hyungson Ki
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 79316-79325 被引量:7
标识
DOI:10.1109/access.2021.3084296
摘要

Deep-learning architectures were employed to simulate the self-piercing riveting process of steel and aluminum sheets and predict the cross-sectional joint shape with a zero head height. Four steels (SPRC440, SPFC590DP, GI780DP, SGAFC980Y) and three aluminum alloys (Al5052, Al5754, Al5083) were considered as the materials for the top and bottom sheets, respectively. The key objective was to consider the material properties of these metal sheets (Young's modulus, Poisson's ratio, and ultimate tensile strength) in a deep-learning framework. Two deep-learning models were considered: In the first model, the properties of the top and bottom sheets were adopted as the scalar inputs, and in the second model, the three properties were graphically assigned to the three channels of the input image. Both the models generated a segmentation image of the cross-section. To assess the accuracy of the predictions, the generated images were compared with ground truth images, and three key geometrical factors (interlock, bottom thickness, and effective length) were measured. The first and second models achieved prediction accuracies of 91.95% and 92.22%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dz618完成签到,获得积分10
刚刚
刚刚
刚刚
852应助葡萄冻冻采纳,获得10
刚刚
Ww发布了新的文献求助10
1秒前
小李呀发布了新的文献求助10
1秒前
2秒前
wangqinlei发布了新的文献求助10
2秒前
2秒前
3秒前
欢呼的冷亦完成签到,获得积分10
3秒前
3秒前
不明生物发布了新的文献求助10
3秒前
dxxcshin完成签到,获得积分10
4秒前
852应助清腾采纳,获得10
4秒前
4秒前
优雅的砖头完成签到,获得积分10
4秒前
花开应助kljlk采纳,获得10
4秒前
4秒前
栗子发布了新的文献求助10
5秒前
5秒前
不安的大米完成签到,获得积分10
5秒前
wangqinlei完成签到,获得积分10
6秒前
6秒前
www发布了新的文献求助10
6秒前
jc_scholar发布了新的文献求助20
7秒前
7秒前
7秒前
科研小垃圾完成签到,获得积分10
8秒前
8秒前
璐璐核桃露给璐璐核桃露的求助进行了留言
8秒前
9秒前
科研小白发布了新的文献求助10
9秒前
YY完成签到,获得积分10
9秒前
H星科23456发布了新的文献求助10
9秒前
9秒前
9秒前
Ccc完成签到 ,获得积分10
9秒前
噜噜噜发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721