Deep-Learning Approach to the Self-Piercing Riveting of Various Combinations of Steel and Aluminum Sheets

铆钉 材料科学 拉深 深度学习 接头(建筑物) 极限抗拉强度 计算机科学 模数 人工智能 机械工程 复合材料 结构工程 工程类
作者
Hyun Kyung Kim,Sehyeok Oh,Keong-Hwan Cho,Dong-Hyuck Kam,Hyungson Ki
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 79316-79325 被引量:7
标识
DOI:10.1109/access.2021.3084296
摘要

Deep-learning architectures were employed to simulate the self-piercing riveting process of steel and aluminum sheets and predict the cross-sectional joint shape with a zero head height. Four steels (SPRC440, SPFC590DP, GI780DP, SGAFC980Y) and three aluminum alloys (Al5052, Al5754, Al5083) were considered as the materials for the top and bottom sheets, respectively. The key objective was to consider the material properties of these metal sheets (Young's modulus, Poisson's ratio, and ultimate tensile strength) in a deep-learning framework. Two deep-learning models were considered: In the first model, the properties of the top and bottom sheets were adopted as the scalar inputs, and in the second model, the three properties were graphically assigned to the three channels of the input image. Both the models generated a segmentation image of the cross-section. To assess the accuracy of the predictions, the generated images were compared with ground truth images, and three key geometrical factors (interlock, bottom thickness, and effective length) were measured. The first and second models achieved prediction accuracies of 91.95% and 92.22%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
许健完成签到 ,获得积分10
1秒前
充电宝应助Puffkten采纳,获得10
1秒前
only完成签到 ,获得积分10
3秒前
怕黑剑封发布了新的文献求助10
3秒前
5秒前
Eon完成签到,获得积分10
5秒前
6秒前
6秒前
令狐秋双完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
江边鸟完成签到 ,获得积分10
8秒前
微笑翠桃完成签到,获得积分20
9秒前
小开心发布了新的文献求助10
9秒前
Eon发布了新的文献求助10
9秒前
姚美阁完成签到 ,获得积分10
10秒前
mufcyang发布了新的文献求助10
11秒前
12秒前
12秒前
Puffkten发布了新的文献求助10
13秒前
与梦随行2011完成签到,获得积分10
13秒前
13秒前
高哈哈哈完成签到,获得积分10
14秒前
yr发布了新的文献求助10
17秒前
18秒前
微笑翠桃发布了新的文献求助10
21秒前
21秒前
马佳音完成签到 ,获得积分10
22秒前
在水一方应助Eon采纳,获得10
22秒前
TB123发布了新的文献求助10
22秒前
24秒前
JHL完成签到 ,获得积分10
24秒前
26秒前
26秒前
黎是叻熠黎完成签到,获得积分10
27秒前
每天必补一科完成签到,获得积分10
27秒前
花生完成签到,获得积分10
28秒前
mufcyang完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714