Deep-Learning Approach to the Self-Piercing Riveting of Various Combinations of Steel and Aluminum Sheets

铆钉 材料科学 拉深 深度学习 接头(建筑物) 极限抗拉强度 计算机科学 模数 人工智能 机械工程 复合材料 结构工程 工程类
作者
Hyun Kyung Kim,Sehyeok Oh,Keong-Hwan Cho,Dong-Hyuck Kam,Hyungson Ki
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 79316-79325 被引量:7
标识
DOI:10.1109/access.2021.3084296
摘要

Deep-learning architectures were employed to simulate the self-piercing riveting process of steel and aluminum sheets and predict the cross-sectional joint shape with a zero head height. Four steels (SPRC440, SPFC590DP, GI780DP, SGAFC980Y) and three aluminum alloys (Al5052, Al5754, Al5083) were considered as the materials for the top and bottom sheets, respectively. The key objective was to consider the material properties of these metal sheets (Young's modulus, Poisson's ratio, and ultimate tensile strength) in a deep-learning framework. Two deep-learning models were considered: In the first model, the properties of the top and bottom sheets were adopted as the scalar inputs, and in the second model, the three properties were graphically assigned to the three channels of the input image. Both the models generated a segmentation image of the cross-section. To assess the accuracy of the predictions, the generated images were compared with ground truth images, and three key geometrical factors (interlock, bottom thickness, and effective length) were measured. The first and second models achieved prediction accuracies of 91.95% and 92.22%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adou发布了新的文献求助10
刚刚
传奇3应助maliao采纳,获得30
刚刚
刚刚
斯文败类应助远古遗迹采纳,获得30
刚刚
wanzixian发布了新的文献求助10
刚刚
DONG完成签到,获得积分10
1秒前
ding应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
比奇堡派大星完成签到 ,获得积分20
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
天天快乐应助687采纳,获得10
2秒前
豆芽完成签到 ,获得积分10
2秒前
马尔斯完成签到,获得积分10
3秒前
田様应助单身的老三采纳,获得10
4秒前
DONG发布了新的文献求助10
4秒前
4秒前
MXX完成签到 ,获得积分10
4秒前
n0way完成签到,获得积分10
6秒前
Cat完成签到,获得积分0
6秒前
alanbike完成签到,获得积分10
6秒前
cy2完成签到,获得积分20
7秒前
领导范儿应助宋宋采纳,获得10
7秒前
8秒前
陈小瑜完成签到,获得积分10
8秒前
怡然的扬发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
Dr大壮发布了新的文献求助10
12秒前
12秒前
13秒前
科研小弟完成签到,获得积分10
13秒前
秦艽发布了新的文献求助10
13秒前
14秒前
14秒前
zhc4563发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572176
求助须知:如何正确求助?哪些是违规求助? 4657440
关于积分的说明 14720306
捐赠科研通 4598129
什么是DOI,文献DOI怎么找? 2523579
邀请新用户注册赠送积分活动 1494346
关于科研通互助平台的介绍 1464433