Deep-Learning Approach to the Self-Piercing Riveting of Various Combinations of Steel and Aluminum Sheets

铆钉 材料科学 拉深 深度学习 接头(建筑物) 极限抗拉强度 计算机科学 模数 人工智能 机械工程 复合材料 结构工程 工程类
作者
Hyun Kyung Kim,Sehyeok Oh,Keong-Hwan Cho,Dong-Hyuck Kam,Hyungson Ki
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 79316-79325 被引量:7
标识
DOI:10.1109/access.2021.3084296
摘要

Deep-learning architectures were employed to simulate the self-piercing riveting process of steel and aluminum sheets and predict the cross-sectional joint shape with a zero head height. Four steels (SPRC440, SPFC590DP, GI780DP, SGAFC980Y) and three aluminum alloys (Al5052, Al5754, Al5083) were considered as the materials for the top and bottom sheets, respectively. The key objective was to consider the material properties of these metal sheets (Young's modulus, Poisson's ratio, and ultimate tensile strength) in a deep-learning framework. Two deep-learning models were considered: In the first model, the properties of the top and bottom sheets were adopted as the scalar inputs, and in the second model, the three properties were graphically assigned to the three channels of the input image. Both the models generated a segmentation image of the cross-section. To assess the accuracy of the predictions, the generated images were compared with ground truth images, and three key geometrical factors (interlock, bottom thickness, and effective length) were measured. The first and second models achieved prediction accuracies of 91.95% and 92.22%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PONY完成签到,获得积分10
刚刚
fairyinn完成签到,获得积分10
刚刚
读二白发布了新的文献求助10
刚刚
碎碎发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
我想静静发布了新的文献求助10
3秒前
4秒前
sunny33发布了新的文献求助10
4秒前
啦啦啦啦完成签到,获得积分10
4秒前
niufuking发布了新的文献求助10
4秒前
zz发布了新的文献求助10
6秒前
ydl0927完成签到 ,获得积分10
6秒前
6秒前
NexusExplorer应助满意语芙采纳,获得10
6秒前
llll完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
CipherSage应助zhengyalan采纳,获得10
8秒前
9秒前
深情安青应助加油呀采纳,获得30
9秒前
lonely发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
想逃离发布了新的文献求助10
12秒前
Sally完成签到,获得积分10
12秒前
烟花应助GGbond采纳,获得10
12秒前
无花果应助GGbond采纳,获得10
12秒前
万能图书馆应助GGbond采纳,获得10
12秒前
12秒前
丘比特应助GGbond采纳,获得10
12秒前
orixero应助GGbond采纳,获得10
12秒前
李慧敏完成签到,获得积分10
12秒前
CipherSage应助GGbond采纳,获得10
13秒前
田様应助GGbond采纳,获得10
13秒前
深情安青应助GGbond采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901