亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A bi-level machine learning method for fault diagnosis of oil-immersed transformers with feature explainability

特征选择 医学诊断 变压器 超参数 计算机科学 溶解气体分析 断层(地质) 人工智能 可靠性工程 极限学习机 机器学习 数据挖掘 朴素贝叶斯分类器 工程类 变压器油 模式识别(心理学) 支持向量机 电压 人工神经网络 病理 地质学 地震学 电气工程 医学
作者
Di Zhang,Canbing Li,Mohammad Shahidehpour,Qing Wu,Bin Zhou,Cong Zhang,Wentao Huang
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:134: 107356-107356 被引量:21
标识
DOI:10.1016/j.ijepes.2021.107356
摘要

Power transformer faults are considered rare events, so data samples in normal operations are much more readily available than in faulty conditions. Traditionally, power transformer fault diagnoses were enabled through gas-in-oil data, where erroneous diagnoses of faulty conditions as normal could have a more significant effect on power system operations than wrong diagnoses of normal operations as a faulty condition. Therefore, it is imperative to analyze gas-in-oil data characteristics more effectively to improve the performance of diagnostic methods. In this paper, an explainable bi-level machine learning method is proposed for oil-immersed power transformer fault diagnoses, consisting of a binary imbalanced classification model and a multi-classification model. The proposed Extreme Gradient Boosting models are designed with custom functions at each level, and automatic hyperparameters tuning is conducted based on Bayesian optimization. A fault feature selection is developed using the SHapley Additive exPlanations method to explain the diagnosis results, which could mine the impacts of fault features on diagnosis results and find the approach to improve the model performance. The fault diagnosis results are presented with performance analysis and comparative studies, and the feature selection results with importance analysis for each fault type based on SHAP value is provided, which demonstrates the feasibility and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
5秒前
HaCat应助科研通管家采纳,获得10
10秒前
HaCat应助科研通管家采纳,获得10
10秒前
嘻嘻哈哈应助科研通管家采纳,获得10
10秒前
HaCat应助科研通管家采纳,获得10
10秒前
HaCat应助科研通管家采纳,获得10
10秒前
可爱丹彤发布了新的文献求助10
11秒前
17秒前
17秒前
18秒前
友好寻真发布了新的文献求助20
22秒前
yuxia发布了新的文献求助10
22秒前
默默襄发布了新的文献求助10
22秒前
23秒前
as发布了新的文献求助10
23秒前
Qwer完成签到 ,获得积分10
30秒前
隐形曼青应助默默襄采纳,获得10
41秒前
丘比特应助yuxia采纳,获得10
55秒前
1分钟前
1分钟前
1分钟前
就是梦而已完成签到,获得积分10
1分钟前
窝窝窝书完成签到,获得积分10
1分钟前
1分钟前
仁爱的狗发布了新的文献求助10
1分钟前
1分钟前
仁爱的狗完成签到,获得积分10
1分钟前
housii完成签到,获得积分10
1分钟前
1分钟前
housii发布了新的文献求助10
1分钟前
勤奋丹萱完成签到 ,获得积分10
1分钟前
Mic应助housii采纳,获得10
2分钟前
HaCat应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得20
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302133
求助须知:如何正确求助?哪些是违规求助? 4449379
关于积分的说明 13848275
捐赠科研通 4335535
什么是DOI,文献DOI怎么找? 2380395
邀请新用户注册赠送积分活动 1375402
关于科研通互助平台的介绍 1341557