A bi-level machine learning method for fault diagnosis of oil-immersed transformers with feature explainability

特征选择 医学诊断 变压器 超参数 计算机科学 溶解气体分析 断层(地质) 人工智能 可靠性工程 极限学习机 机器学习 数据挖掘 朴素贝叶斯分类器 工程类 变压器油 模式识别(心理学) 支持向量机 电压 人工神经网络 病理 地质学 地震学 电气工程 医学
作者
Di Zhang,Canbing Li,Mohammad Shahidehpour,Qing Wu,Bin Zhou,Cong Zhang,Wentao Huang
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:134: 107356-107356 被引量:21
标识
DOI:10.1016/j.ijepes.2021.107356
摘要

Power transformer faults are considered rare events, so data samples in normal operations are much more readily available than in faulty conditions. Traditionally, power transformer fault diagnoses were enabled through gas-in-oil data, where erroneous diagnoses of faulty conditions as normal could have a more significant effect on power system operations than wrong diagnoses of normal operations as a faulty condition. Therefore, it is imperative to analyze gas-in-oil data characteristics more effectively to improve the performance of diagnostic methods. In this paper, an explainable bi-level machine learning method is proposed for oil-immersed power transformer fault diagnoses, consisting of a binary imbalanced classification model and a multi-classification model. The proposed Extreme Gradient Boosting models are designed with custom functions at each level, and automatic hyperparameters tuning is conducted based on Bayesian optimization. A fault feature selection is developed using the SHapley Additive exPlanations method to explain the diagnosis results, which could mine the impacts of fault features on diagnosis results and find the approach to improve the model performance. The fault diagnosis results are presented with performance analysis and comparative studies, and the feature selection results with importance analysis for each fault type based on SHAP value is provided, which demonstrates the feasibility and effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷酷依秋发布了新的文献求助10
1秒前
beibei111发布了新的文献求助10
1秒前
JamesPei应助曾叫兽采纳,获得10
1秒前
2秒前
2秒前
巫雍发布了新的文献求助10
2秒前
可爱的函函应助infognet采纳,获得10
3秒前
Jazzen完成签到,获得积分10
3秒前
assure发布了新的文献求助10
3秒前
今后应助榴莲小胖采纳,获得10
3秒前
gro_ele完成签到,获得积分10
3秒前
专注之双发布了新的文献求助100
3秒前
师师发布了新的文献求助10
3秒前
927完成签到,获得积分20
3秒前
星辰大海应助ZC采纳,获得10
4秒前
4秒前
jnb发布了新的文献求助10
5秒前
whw发布了新的文献求助10
5秒前
WTX完成签到,获得积分10
5秒前
传奇3应助weixi4457采纳,获得10
6秒前
深情安青应助yqsf789采纳,获得10
6秒前
6秒前
hjq完成签到,获得积分10
7秒前
7秒前
称心的栗子完成签到 ,获得积分10
7秒前
核桃应助Promise采纳,获得10
7秒前
称心梦容发布了新的文献求助10
7秒前
哈哈发布了新的文献求助10
8秒前
洗衣液发布了新的文献求助10
8秒前
庭中踏雪来完成签到 ,获得积分10
8秒前
9秒前
II完成签到,获得积分10
10秒前
顾矜应助ppsparkling采纳,获得10
10秒前
10秒前
wy.he应助咳咳咳采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
隐形曼青应助blue采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512517
求助须知:如何正确求助?哪些是违规求助? 4606978
关于积分的说明 14502144
捐赠科研通 4542339
什么是DOI,文献DOI怎么找? 2489004
邀请新用户注册赠送积分活动 1471040
关于科研通互助平台的介绍 1443182