A bi-level machine learning method for fault diagnosis of oil-immersed transformers with feature explainability

特征选择 医学诊断 变压器 超参数 计算机科学 溶解气体分析 断层(地质) 人工智能 可靠性工程 极限学习机 机器学习 数据挖掘 朴素贝叶斯分类器 工程类 变压器油 模式识别(心理学) 支持向量机 电压 人工神经网络 病理 地质学 地震学 电气工程 医学
作者
Di Zhang,Canbing Li,Mohammad Shahidehpour,Qing Wu,Bin Zhou,Cong Zhang,Wentao Huang
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:134: 107356-107356 被引量:21
标识
DOI:10.1016/j.ijepes.2021.107356
摘要

Power transformer faults are considered rare events, so data samples in normal operations are much more readily available than in faulty conditions. Traditionally, power transformer fault diagnoses were enabled through gas-in-oil data, where erroneous diagnoses of faulty conditions as normal could have a more significant effect on power system operations than wrong diagnoses of normal operations as a faulty condition. Therefore, it is imperative to analyze gas-in-oil data characteristics more effectively to improve the performance of diagnostic methods. In this paper, an explainable bi-level machine learning method is proposed for oil-immersed power transformer fault diagnoses, consisting of a binary imbalanced classification model and a multi-classification model. The proposed Extreme Gradient Boosting models are designed with custom functions at each level, and automatic hyperparameters tuning is conducted based on Bayesian optimization. A fault feature selection is developed using the SHapley Additive exPlanations method to explain the diagnosis results, which could mine the impacts of fault features on diagnosis results and find the approach to improve the model performance. The fault diagnosis results are presented with performance analysis and comparative studies, and the feature selection results with importance analysis for each fault type based on SHAP value is provided, which demonstrates the feasibility and effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nzxnzx发布了新的文献求助10
刚刚
刚刚
Exc完成签到,获得积分0
1秒前
ddd完成签到,获得积分10
1秒前
祖冰绿完成签到,获得积分20
1秒前
金22完成签到,获得积分10
2秒前
Nicole完成签到 ,获得积分10
2秒前
优雅的猪完成签到,获得积分10
3秒前
因为我从来是那样完成签到,获得积分10
3秒前
3秒前
诗图完成签到,获得积分10
3秒前
所所应助杜兰特工队采纳,获得30
4秒前
小二郎应助猪猪hero采纳,获得10
4秒前
漫步云端完成签到,获得积分10
4秒前
彭于晏应助二狗家的春天采纳,获得10
4秒前
木子发布了新的文献求助10
5秒前
5秒前
5秒前
7秒前
7秒前
zzp完成签到,获得积分10
8秒前
刻苦的幻巧完成签到 ,获得积分10
8秒前
crrrrr完成签到,获得积分10
9秒前
9秒前
zym428完成签到,获得积分10
9秒前
coolkid应助1蓝采纳,获得10
9秒前
znsmaqwdy发布了新的文献求助10
9秒前
周琦发布了新的文献求助10
10秒前
科研通AI2S应助he采纳,获得10
10秒前
10秒前
LTY发布了新的文献求助30
11秒前
11秒前
超级不言发布了新的文献求助20
12秒前
康若英完成签到,获得积分10
12秒前
tree发布了新的文献求助10
12秒前
12秒前
13秒前
积极的远山完成签到,获得积分10
13秒前
finerain7完成签到,获得积分10
13秒前
crrrrr发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650