Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning

转录组 卷积神经网络 计算机科学 人工智能 深度学习 背景(考古学) 计算生物学 模式识别(心理学) 空间语境意识 生物 基因 基因表达 生物化学 古生物学
作者
Yuzhou Chang,Fei He,Juexin Wang,Shuo Chen,Jingyi Li,Jixin Liu,Yongmei Yu,Li Su,Anjun Ma,Carter Allen,Lin Yang,Shaoli Sun,Bingqiang Liu,José Otero,Dongjun Chung,Hongjun Fu,Zihai Li,Dong Xu,Qin Ma
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:20: 4600-4617 被引量:17
标识
DOI:10.1016/j.csbj.2022.08.029
摘要

Spatially resolved transcriptomics provides a new way to define spatial contexts and understand the pathogenesis of complex human diseases. Although some computational frameworks can characterize spatial context via various clustering methods, the detailed spatial architectures and functional zonation often cannot be revealed and localized due to the limited capacities of associating spatial information. We present RESEPT, a deep-learning framework for characterizing and visualizing tissue architecture from spatially resolved transcriptomics. Given inputs such as gene expression or RNA velocity, RESEPT learns a three-dimensional embedding with a spatial retained graph neural network from spatial transcriptomics. The embedding is then visualized by mapping into color channels in an RGB image and segmented with a supervised convolutional neural network model. Based on a benchmark of 10x Genomics Visium spatial transcriptomics datasets on the human and mouse cortex, RESEPT infers and visualizes the tissue architecture accurately. It is noteworthy that, for the in-house AD samples, RESEPT can localize cortex layers and cell types based on pre-defined region- or cell-type-enriched genes and furthermore provide critical insights into the identification of amyloid-beta plaques in Alzheimer's disease. Interestingly, in a glioblastoma sample analysis, RESEPT distinguishes tumor-enriched, non-tumor, and regions of neuropil with infiltrating tumor cells in support of clinical and prognostic cancer applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昏睡的绍辉完成签到,获得积分10
1秒前
桐桐应助芙卡洛斯采纳,获得10
3秒前
糟糕得就是想见到你关注了科研通微信公众号
4秒前
yaoyaoyao完成签到 ,获得积分10
6秒前
周少完成签到,获得积分10
6秒前
luyang发布了新的文献求助10
6秒前
小二郎应助Liang采纳,获得10
10秒前
iwhsgfes完成签到,获得积分10
10秒前
鲸落发布了新的文献求助30
11秒前
12秒前
12秒前
12秒前
搜集达人应助lynh0508采纳,获得10
12秒前
拼搏的似狮完成签到,获得积分10
12秒前
李健的小迷弟应助dudu采纳,获得10
13秒前
天天快乐应助牛诗悦采纳,获得10
13秒前
yuki发布了新的文献求助10
14秒前
FashionBoy应助coolkid采纳,获得10
15秒前
负责的千易关注了科研通微信公众号
15秒前
16秒前
16秒前
dudu完成签到 ,获得积分10
16秒前
16秒前
科目三应助LIN采纳,获得10
17秒前
fan发布了新的文献求助10
17秒前
17秒前
17秒前
luyang完成签到,获得积分10
19秒前
芙卡洛斯发布了新的文献求助10
19秒前
6rkuttsmdt发布了新的文献求助10
20秒前
21秒前
活泼又晴发布了新的文献求助20
21秒前
panpan完成签到,获得积分10
22秒前
22秒前
25秒前
25秒前
Hello应助十一采纳,获得10
26秒前
dudu发布了新的文献求助10
27秒前
哇卡哇卡完成签到,获得积分10
28秒前
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141028
求助须知:如何正确求助?哪些是违规求助? 2791955
关于积分的说明 7801220
捐赠科研通 2448217
什么是DOI,文献DOI怎么找? 1302479
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226