Body-mass index and diabetes risk in 57 low-income and middle-income countries: a cross-sectional study of nationally representative, individual-level data in 685 616 adults

医学 体质指数 糖尿病 超重 肥胖 人口学 血糖 横断面研究 截面数据 环境卫生 中低收入国家 发展中国家 内科学 内分泌学 统计 病理 经济 社会学 经济增长 数学
作者
Felix Teufel,Jacqueline A. Seiglie,Pascal Geldsetzer,Michaela Theilmann,Maja-Emilia Marcus,Cara Ebert,William Andres Lopez Arboleda,Kokou Agoudavi,Glennis Andall‐Brereton,Krishna Kumar Aryal,Brice Bicaba,Garry Brian,Pascal Bovet,Maria Dorobanțu,Mongal Singh Gurung,David Guwatudde,Corine Houéhanou,Dismand Houinato,Jutta M Adelin Jorgensen,Gibson B. Kagaruki,Khem Bahadur Karki,Demetre Labadarios,João S Martins,Mary Mayige,Roy Wong McClure,Joseph Kibachio Mwangi,Omar Mwalim,Болормаа Норов,Sarah Crooks,Farshad Farzadfar,Sahar Saeedi Moghaddam,Silver Bahendeka,Lela Sturua,Chea Sanford Wesseh,Andrew Stokes,Utibe R. Essien,Jan‐Walter De Neve,Rifat Atun,Justine Davies,Sebastián Vollmer,Till Bärnighausen,Mohammed K. Ali,James B. Meigs,Deborah J. Wexler,Jennifer Manne‐Goehler
出处
期刊:The Lancet [Elsevier]
卷期号:398 (10296): 238-248 被引量:77
标识
DOI:10.1016/s0140-6736(21)00844-8
摘要

The prevalence of overweight, obesity, and diabetes is rising rapidly in low-income and middle-income countries (LMICs), but there are scant empirical data on the association between body-mass index (BMI) and diabetes in these settings.In this cross-sectional study, we pooled individual-level data from nationally representative surveys across 57 LMICs. We identified all countries in which a WHO Stepwise Approach to Surveillance (STEPS) survey had been done during a year in which the country fell into an eligible World Bank income group category. For LMICs that did not have a STEPS survey, did not have valid contact information, or declined our request for data, we did a systematic search for survey datasets. Eligible surveys were done during or after 2008; had individual-level data; were done in a low-income, lower-middle-income, or upper-middle-income country; were nationally representative; had a response rate of 50% or higher; contained a diabetes biomarker (either a blood glucose measurement or glycated haemoglobin [HbA1c]); and contained data on height and weight. Diabetes was defined biologically as a fasting plasma glucose concentration of 7·0 mmol/L (126·0 mg/dL) or higher; a random plasma glucose concentration of 11·1 mmol/L (200·0 mg/dL) or higher; or a HbA1c of 6·5% (48·0 mmol/mol) or higher, or by self-reported use of diabetes medication. We included individuals aged 25 years or older with complete data on diabetes status, BMI (defined as normal [18·5-22·9 kg/m2], upper-normal [23·0-24·9 kg/m2], overweight [25·0-29·9 kg/m2], or obese [≥30·0 kg/m2]), sex, and age. Countries were categorised into six geographical regions: Latin America and the Caribbean, Europe and central Asia, east, south, and southeast Asia, sub-Saharan Africa, Middle East and north Africa, and Oceania. We estimated the association between BMI and diabetes risk by multivariable Poisson regression and receiver operating curve analyses, stratified by sex and geographical region.Our pooled dataset from 58 nationally representative surveys in 57 LMICs included 685 616 individuals. The overall prevalence of overweight was 27·2% (95% CI 26·6-27·8), of obesity was 21·0% (19·6-22·5), and of diabetes was 9·3% (8·4-10·2). In the pooled analysis, a higher risk of diabetes was observed at a BMI of 23 kg/m2 or higher, with a 43% greater risk of diabetes for men and a 41% greater risk for women compared with a BMI of 18·5-22·9 kg/m2. Diabetes risk also increased steeply in individuals aged 35-44 years and in men aged 25-34 years in sub-Saharan Africa. In the stratified analyses, there was considerable regional variability in this association. Optimal BMI thresholds for diabetes screening ranged from 23·8 kg/m2 among men in east, south, and southeast Asia to 28·3 kg/m2 among women in the Middle East and north Africa and in Latin America and the Caribbean.The association between BMI and diabetes risk in LMICs is subject to substantial regional variability. Diabetes risk is greater at lower BMI thresholds and at younger ages than reflected in currently used BMI cutoffs for assessing diabetes risk. These findings offer an important insight to inform context-specific diabetes screening guidelines.Harvard T H Chan School of Public Health McLennan Fund: Dean's Challenge Grant Program.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
robi发布了新的文献求助10
刚刚
Felix发布了新的文献求助10
1秒前
sys完成签到,获得积分10
1秒前
123发布了新的文献求助10
1秒前
yaoyao完成签到 ,获得积分10
1秒前
研友_850EYZ发布了新的文献求助10
2秒前
贰鸟应助joanna0932采纳,获得20
2秒前
3秒前
3秒前
赘婿应助一二采纳,获得10
5秒前
wu完成签到,获得积分10
5秒前
NexusExplorer应助王爱灿采纳,获得10
5秒前
6秒前
6秒前
You关注了科研通微信公众号
10秒前
研究啥完成签到,获得积分10
12秒前
FashionBoy应助犹豫弘文采纳,获得10
12秒前
乍见完成签到,获得积分10
15秒前
Hello应助DianaRang采纳,获得10
15秒前
15秒前
17秒前
海盐黑胡椒123完成签到,获得积分10
17秒前
郁金香完成签到,获得积分10
17秒前
19秒前
obaica发布了新的文献求助10
19秒前
王爱灿发布了新的文献求助10
20秒前
研友_VZG7GZ应助莫华龙采纳,获得10
20秒前
流光完成签到 ,获得积分10
21秒前
小马甲应助活泼飞鸟采纳,获得50
21秒前
ZERO完成签到,获得积分10
22秒前
赘婿应助YI点半的飞机场采纳,获得10
24秒前
25秒前
123完成签到,获得积分10
27秒前
29秒前
研友_LOokQL发布了新的文献求助10
31秒前
不配.应助DianaRang采纳,获得10
35秒前
华仔应助jbear采纳,获得10
36秒前
科研通AI2S应助搬石头采纳,获得10
39秒前
robi发布了新的文献求助10
40秒前
酷酷小子完成签到 ,获得积分10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825