已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Whole-body MRI radiomics model to predict relapsed/refractory Hodgkin Lymphoma: A preliminary study

医学 无线电技术 ABVD公司 淋巴瘤 放射科 磁共振成像 内科学 核医学 化疗 环磷酰胺 长春新碱
作者
Domenico Albano,Renato Cuocolo,Caterina Patti,Lorenzo Ugga,Vito Chianca,Vittoria Tarantino,Roberta Faraone,Silvia Albano,Giuseppe Micci,Alessandro Costa,Rosario Paratore,Umberto Ficola,Roberto Lagalla,Massimo Midiri,Massimo Galia
出处
期刊:Magnetic Resonance Imaging [Elsevier]
卷期号:86: 55-60 被引量:5
标识
DOI:10.1016/j.mri.2021.11.005
摘要

A strong prognostic score that enables a stratification of newly diagnosed Hodgkin Lymphoma (HL) to identify patients at high risk of refractory/relapsed disease is still needed. Our aim was to investigate the potential value of a radiomics analysis pipeline from whole-body MRI (WB-MRI) exams for clinical outcome prediction in patients with HL. Index lesions from baseline WB-MRIs of 40 patients (22 females; mean age 31.7 ± 11.4 years) with newly diagnosed HL treated by ABVD chemotherapy regimen were manually segmented on T1-weighted, STIR, and DWI images for texture analysis feature extraction. A machine learning approach based on the Extra Trees classifier and incorporating clinical variables, 18 F-FDG-PET/CT-derived metabolic tumor volume, and WB-MRI radiomics features was tested using cross-validation to predict refractory/relapsed disease. Relapsed disease was observed in 10/40 patients (25%), two of whom died due to progression of disease and graft versus host disease, while eight reached the complete remission. In total, 1403 clinical and radiomics features were extracted, of which 11 clinical variables and 171 radiomics parameters from both original and filtered images were selected. The 3 best performing Extra Trees classifier models obtained an equivalent highest mean accuracy of 0.78 and standard deviation of 0.09, with a mean AUC of 0.82 and standard deviation of 0.08. Our preliminary results demonstrate that a combined machine learning and texture analysis model to predict refractory/relapsed HL on WB-MRI exams is feasible and may help in the clinical outcome prediction in HL patients. • There is a lack of powerful prognostic score to correctly stratify HL patients. • We have shown the feasibility of a ML pipeline to predict refractory/relapsed HL. • The ML pipeline combines clinical variables, PET-MTV and WB-MRI radiomics features. • Our approach needs to be confirmed by larger ML studies to support its clinical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵完成签到 ,获得积分10
1秒前
无月完成签到 ,获得积分10
2秒前
魔幻若血完成签到,获得积分10
4秒前
dota1dota26完成签到,获得积分10
4秒前
6秒前
完美世界应助陆艳梅2023采纳,获得10
6秒前
韩韩完成签到,获得积分10
7秒前
阔达岂愈发布了新的文献求助10
10秒前
细腻的灵槐完成签到 ,获得积分10
10秒前
科研通AI2S应助冷静新烟采纳,获得10
13秒前
15秒前
shweah2003完成签到,获得积分10
16秒前
如初完成签到 ,获得积分10
16秒前
丘比特应助董世英采纳,获得10
18秒前
lhr发布了新的文献求助10
19秒前
21秒前
lhr完成签到,获得积分20
27秒前
27秒前
董世英发布了新的文献求助10
32秒前
nizam完成签到,获得积分20
32秒前
烟花应助揍鱼采纳,获得10
33秒前
wanci应助雨打浮萍采纳,获得10
34秒前
zxcvbnm完成签到 ,获得积分10
34秒前
38秒前
和光同尘完成签到,获得积分10
40秒前
chao2333完成签到 ,获得积分10
41秒前
大意的茈关注了科研通微信公众号
41秒前
揍鱼发布了新的文献求助10
44秒前
董世英完成签到,获得积分10
48秒前
48秒前
雨打浮萍完成签到,获得积分10
51秒前
懒回顾完成签到,获得积分10
53秒前
54秒前
雨打浮萍发布了新的文献求助10
55秒前
Owen应助大意的茈采纳,获得10
57秒前
雷锋完成签到 ,获得积分10
58秒前
懒回顾发布了新的文献求助10
59秒前
莓烦恼完成签到 ,获得积分10
1分钟前
彦子完成签到 ,获得积分10
1分钟前
evelyn完成签到 ,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499843
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428763
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382