Machine learning-based prediction of adherence to continuous positive airway pressure (CPAP) in obstructive sleep apnea (OSA)

持续气道正压 医学 阻塞性睡眠呼吸暂停 睡眠呼吸暂停 呼吸暂停 气道正压 金标准(测试) 正压 内科学 麻醉
作者
Giulia Scioscia,Pasquale Tondo,Maria Pia Foschino Barbaro,Roberto Sabato,Crescenzio Gallo,Federica Maci,Donato Lacedonia
出处
期刊:Informatics for Health & Social Care [Taylor & Francis]
卷期号:47 (3): 274-282 被引量:18
标识
DOI:10.1080/17538157.2021.1990300
摘要

Continuous positive airway pressure (CPAP) is the "gold-standard" therapy for obstructive sleep apnea (OSA), but the main problem is the poor adherence. Therefore, we have searched for the causes of poor adherence to CPAP therapy by applying predictive machine learning (ML) methods. The study was conducted on OSAs in nighttime therapy with CPAP. An outpatient follow-up was planned at 3, 6, 12 months. We collected several parameters at the baseline visit and after dividing all patients into two groups (Adherent and Non-adherent) according to therapy adherence, we compared them. Statistical differences between the two groups were not found according to baseline characteristics, except gender (P< .01). Therefore, we applied ML to predict CPAP adherence, and these predictive models showed an accuracy and sensitivity of 68.6% and an AUC (area under the curve) of 72.9% through the SVM (support vector machine) classification method. The identification of factors predictive of long-term CPAP adherence is complex, but our proof of concept seems to demonstrate the utility of ML to identify subjects poorly adherent to therapy. Therefore, application of these models to larger samples could aid in the careful identification of these subjects and result in important savings in healthcare spending.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张博关注了科研通微信公众号
刚刚
dj发布了新的文献求助10
刚刚
cc完成签到,获得积分10
刚刚
刚刚
小蘑菇应助冷酷保温杯采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
SYLH应助学生物的橘子采纳,获得20
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
Lionel发布了新的文献求助10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
blue应助科研通管家采纳,获得10
2秒前
2秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Sunech发布了新的文献求助10
3秒前
周哲发布了新的文献求助10
3秒前
乔达摩悉达多完成签到 ,获得积分10
3秒前
Cain0807完成签到,获得积分10
4秒前
4秒前
Hao完成签到,获得积分10
5秒前
dj完成签到,获得积分10
5秒前
倘若tt发布了新的文献求助10
5秒前
小杨完成签到,获得积分10
5秒前
xueshanfeihu完成签到,获得积分10
7秒前
7秒前
7秒前
流觞曲水发布了新的文献求助10
8秒前
9秒前
XLeft完成签到 ,获得积分10
10秒前
11秒前
健忘捕发布了新的文献求助20
11秒前
11秒前
xueshanfeihu发布了新的文献求助20
12秒前
海风发布了新的文献求助10
12秒前
Miller完成签到,获得积分0
13秒前
小二郎应助刘哔采纳,获得30
13秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980154
求助须知:如何正确求助?哪些是违规求助? 3524160
关于积分的说明 11220159
捐赠科研通 3261641
什么是DOI,文献DOI怎么找? 1800734
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232