Machine learning-based prediction of adherence to continuous positive airway pressure (CPAP) in obstructive sleep apnea (OSA)

持续气道正压 医学 阻塞性睡眠呼吸暂停 睡眠呼吸暂停 呼吸暂停 气道正压 金标准(测试) 正压 内科学 麻醉
作者
Giulia Scioscia,Pasquale Tondo,Maria Pia Foschino Barbaro,Roberto Sabato,Crescenzio Gallo,Federica Maci,Donato Lacedonia
出处
期刊:Informatics for Health & Social Care [Informa]
卷期号:47 (3): 274-282 被引量:18
标识
DOI:10.1080/17538157.2021.1990300
摘要

Continuous positive airway pressure (CPAP) is the "gold-standard" therapy for obstructive sleep apnea (OSA), but the main problem is the poor adherence. Therefore, we have searched for the causes of poor adherence to CPAP therapy by applying predictive machine learning (ML) methods. The study was conducted on OSAs in nighttime therapy with CPAP. An outpatient follow-up was planned at 3, 6, 12 months. We collected several parameters at the baseline visit and after dividing all patients into two groups (Adherent and Non-adherent) according to therapy adherence, we compared them. Statistical differences between the two groups were not found according to baseline characteristics, except gender (P< .01). Therefore, we applied ML to predict CPAP adherence, and these predictive models showed an accuracy and sensitivity of 68.6% and an AUC (area under the curve) of 72.9% through the SVM (support vector machine) classification method. The identification of factors predictive of long-term CPAP adherence is complex, but our proof of concept seems to demonstrate the utility of ML to identify subjects poorly adherent to therapy. Therefore, application of these models to larger samples could aid in the careful identification of these subjects and result in important savings in healthcare spending.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
bkagyin应助linqitc采纳,获得10
1秒前
ZHIXIANGWENG发布了新的文献求助10
1秒前
陌上发布了新的文献求助10
2秒前
2秒前
lz发布了新的文献求助10
4秒前
长情伊发布了新的文献求助10
4秒前
HONEST发布了新的文献求助10
5秒前
田様应助陌上采纳,获得10
5秒前
研友_VZG7GZ应助陌上采纳,获得10
5秒前
共享精神应助yan1e采纳,获得10
6秒前
慕青应助开心白猫采纳,获得10
6秒前
aqaqaqa发布了新的文献求助10
6秒前
啥也不会完成签到,获得积分10
7秒前
7秒前
清爽的盼芙完成签到 ,获得积分10
8秒前
wdasdas发布了新的文献求助10
8秒前
你好应助四福祥采纳,获得10
8秒前
ph0307发布了新的文献求助10
9秒前
FFF发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
请叫我风吹麦浪应助小梦采纳,获得10
12秒前
12秒前
打打应助百里幻竹采纳,获得10
12秒前
幸运星发布了新的文献求助20
12秒前
尊敬的驳完成签到,获得积分10
13秒前
13秒前
13秒前
aq发布了新的文献求助10
14秒前
Liar发布了新的文献求助10
14秒前
曦语关注了科研通微信公众号
15秒前
16秒前
17秒前
哈哈环完成签到 ,获得积分10
18秒前
linqitc发布了新的文献求助10
19秒前
CHENGRU完成签到 ,获得积分10
19秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461924
求助须知:如何正确求助?哪些是违规求助? 3055592
关于积分的说明 9048604
捐赠科研通 2745261
什么是DOI,文献DOI怎么找? 1506125
科研通“疑难数据库(出版商)”最低求助积分说明 696000
邀请新用户注册赠送积分活动 695539