Nature of Intrinsic Defects in Carbon Materials for Electrochemical Dechlorination of 1,2-Dichloroethane to Ethylene

乙烯 1,2-二氯乙烷 五角形 催化作用 电化学 反应性(心理学) 碳纤维 碳纳米管 材料科学 纳米技术 化学 有机化学 电极 物理化学 复合材料 法学 替代医学 病理 复合数 医学 政治学
作者
Guoqiang Gan,Shiying Fan,Xinyong Li,Jing Wang,Chunpeng Bai,Xuecheng Guo,Moses O. Tadé,Shaomin Liu
出处
期刊:ACS Catalysis 卷期号:11 (22): 14284-14292 被引量:47
标识
DOI:10.1021/acscatal.1c03701
摘要

Carbon materials have been recognized as prospective catalysts for the electrocatalytic 1,2-dichloroethane (DCE) dechlorination reaction (DCEDR), which is an economical and environmentally friendly strategy for the control of DCE contamination and production of highly valuable ethylene. However, the precise nature of intrinsic defects (pentagon, heptagon, octagon, armchair edge, and zigzag edge) in carbon-based catalysts for the electrochemical DCEDR has not been reported to date. Herein, theoretical calculations demonstrated that pentagon site showed the lowest energy barrier of 0.12 eV, indicating a much higher electrochemical reactivity and ethylene selectivity of pentagon defect than those of others. The prediction results have been proved experimentally based on a series of defective carbon materials with definitive defect configurations. Therefore, intrinsic defects played a significant role in the electrocatalytic DCEDR and pentagon defect was responsible for the high performance of defective carbon catalysts. This work not only clarifies the nature of intrinsic defects in carbon materials for electrochemical DCEDR but also provides the design principles for the rational preparation of advanced carbon electrocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang1090完成签到,获得积分10
刚刚
奋斗的许婷2完成签到,获得积分10
刚刚
刚刚
1秒前
hll完成签到,获得积分20
1秒前
阳yang发布了新的文献求助10
1秒前
2秒前
wang1090发布了新的文献求助30
3秒前
呜呜呜呜完成签到,获得积分10
3秒前
3秒前
Riki发布了新的文献求助10
4秒前
88发布了新的文献求助10
4秒前
5秒前
充电宝应助zfy采纳,获得10
6秒前
sak完成签到,获得积分10
7秒前
Shuo Yang发布了新的文献求助20
7秒前
呜呜呜呜发布了新的文献求助10
7秒前
在水一方应助hhzz采纳,获得10
7秒前
旧是完成签到 ,获得积分10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
杨小胖完成签到 ,获得积分10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
mm发布了新的文献求助10
9秒前
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
shouyu29应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
RC_Wang应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得30
10秒前
sutharsons应助科研通管家采纳,获得30
10秒前
归海含烟完成签到,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
shire应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808