Computational ghost imaging based on array sampling

鬼影成像 探测器 采样(信号处理) 计算机科学 图像质量 光学(聚焦) 像素 光学 计算机视觉 人工智能 物理 图像(数学) 电信
作者
Xuan Liu,Tailin Han,Cheng Zhou,Jun Hu,Mingchi Ju,Bo Xu,Lijun Song
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:29 (26): 42772-42772 被引量:6
标识
DOI:10.1364/oe.445000
摘要

High-quality computational ghost imaging under low sampling has always attracted much attention and is an important step in the practical application of computational ghost imaging. However, as far as we know, most studies focus on achieving high-quality computational ghost imaging with one single pixel detector. The high efficiency computational ghost imaging method using multiple single pixel detectors for array measurement is rarely mentioned. In this work, a new computational ghost imaging method based on deep learning technology and array detector measurement has been proposed, which can achieve fast and high-quality imaging. This method can resolve the problem of misalignment and overlap of some pixels in the reconstructed image due to the incomplete correspondence between the array detector and the light field area. At the same time, the problem of partial information loss in the reconstructed image because of the gap between the detection units of the array detector has also been solved. Simulation and experiment results show that our method can obtain high computational ghost imaging quality, even at the low sampling rate of 0.03, and as the detection unit of the array detector increases, the number of sampling is further reduced. This method improves the applicability of computational ghost imaging and can be applied to many fields such as real-time detection and biomedical imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yolanda3088发布了新的文献求助10
刚刚
迷人秋烟应助今天喝咖啡吗采纳,获得100
2秒前
科研通AI5应助传统的太清采纳,获得10
5秒前
7秒前
松月发布了新的文献求助100
7秒前
9秒前
9秒前
orange应助LeungYM采纳,获得30
12秒前
无限飞丹发布了新的文献求助10
12秒前
12秒前
pluto应助李剑鸿采纳,获得30
16秒前
守正创新是鲜明理论品格完成签到,获得积分10
19秒前
苏卿应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
shhoing应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
苏卿应助科研通管家采纳,获得10
23秒前
shhoing应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
shhoing应助科研通管家采纳,获得10
23秒前
苏卿应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得30
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
24秒前
24秒前
24秒前
24秒前
田様应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
shhoing应助科研通管家采纳,获得10
24秒前
852应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
25秒前
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670942
求助须知:如何正确求助?哪些是违规求助? 3227849
关于积分的说明 9777334
捐赠科研通 2938001
什么是DOI,文献DOI怎么找? 1609736
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959