Inspired by “quenching-cracking” strategy: Structure-based design of sulfur-doped graphite felts for ultrahigh-rate vanadium redox flow batteries

材料科学 电极 电解质 化学工程 流动电池 纤维 电池(电) 储能 电流密度 纳米技术 复合材料 冶金 功率(物理) 热力学 物理 工程类 物理化学 化学 量子力学
作者
Zeyu Xu,Mingdong Zhu,Kaiyue Zhang,Xihao Zhang,XU Li-xin,Jianguo Liu,Tao Liu,Chuanwei Yan
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:39: 166-175 被引量:47
标识
DOI:10.1016/j.ensm.2021.04.025
摘要

Vanadium redox flow batteries (VRFBs) are perceived as promising candidates for grid-scale energy storage systems. However, limited improvements in electrode structures restrict the operation of VRFBs at high current densities. Herein, finite element simulations are used to guide the construction direction of the electrode structure. Afterwards, a quenching-cracking strategy is ingeniously employed to successfully construct parallel-aligned micron flow channels on electrode fibers in high agreement with the model, and the consistency of the flow channel structure is verified via deep learning technique. The well-constructed flow channels achieve high specific surface areas of electrodes while enabling the smooth flow of electrolyte over the fiber surfaces. Subsequent graphitization and sulfur-doping processes yield hierarchical fibers with highly conductive cores and well-active surfaces. Benefiting from fine structural modulation, the battery equipped with the as-prepared electrodes delivers an energy efficiency of 80.44 % at an ultra-high current density of 500 mA cm−2 and achieves a peak power density of 1.68 W cm−2. Additionally, the battery is consistently cycled for 1000 cycles at 500 mA cm−2 and the average energy efficiency decay is only 0.01032 % per cycle. Notably, finite element simulations are applied to investigate the velocity distribution of electrolyte in the flow channels, and first-principle calculations are employed to reveal the cause for energy efficiency decay of the battery after long-term cycling. Most importantly, the establishment of structure-activity relationships highlights the significance of comprehensive modulation of electrode fiber structures towards enhancing the performance of VRFBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flywolfg发布了新的文献求助10
1秒前
要减肥的乐双完成签到 ,获得积分10
1秒前
马嘉懿完成签到 ,获得积分10
2秒前
2秒前
VDC发布了新的文献求助10
2秒前
dui发布了新的文献求助10
3秒前
七月完成签到,获得积分10
4秒前
颜林林发布了新的文献求助10
4秒前
zuoyou发布了新的文献求助10
5秒前
Lucas应助bfhlf采纳,获得10
7秒前
核桃小小苏完成签到,获得积分10
8秒前
善学以致用应助简晴采纳,获得10
9秒前
9秒前
李爱国应助123采纳,获得10
10秒前
会笑的猪猪猫完成签到,获得积分10
10秒前
angelinazh完成签到,获得积分0
10秒前
10秒前
搜集达人应助肖沐采纳,获得10
11秒前
烟花应助哎哟我去采纳,获得10
12秒前
12秒前
angelinazh发布了新的文献求助80
14秒前
深情安青应助cmd采纳,获得10
14秒前
14秒前
专一的小海豚完成签到,获得积分10
16秒前
大模型应助会笑的猪猪猫采纳,获得10
16秒前
16秒前
wxx完成签到,获得积分20
17秒前
动人的亦旋完成签到,获得积分10
17秒前
17秒前
Orange应助sssssnape采纳,获得10
17秒前
英姑应助攀攀采纳,获得10
18秒前
蔡蔡蔡发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
enli发布了新的文献求助20
20秒前
20秒前
我是老大应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
Singularity应助科研通管家采纳,获得10
21秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416546
求助须知:如何正确求助?哪些是违规求助? 3018380
关于积分的说明 8884060
捐赠科研通 2705746
什么是DOI,文献DOI怎么找? 1483862
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 680985