Inspired by “quenching-cracking” strategy: Structure-based design of sulfur-doped graphite felts for ultrahigh-rate vanadium redox flow batteries

材料科学 电极 电解质 化学工程 流动电池 纤维 电池(电) 储能 电流密度 纳米技术 复合材料 冶金 功率(物理) 热力学 物理 工程类 物理化学 化学 量子力学
作者
Zeyu Xu,Mingdong Zhu,Kaiyue Zhang,Xihao Zhang,XU Li-xin,Jianguo Liu,Tao Liu,Chuanwei Yan
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:39: 166-175 被引量:47
标识
DOI:10.1016/j.ensm.2021.04.025
摘要

Vanadium redox flow batteries (VRFBs) are perceived as promising candidates for grid-scale energy storage systems. However, limited improvements in electrode structures restrict the operation of VRFBs at high current densities. Herein, finite element simulations are used to guide the construction direction of the electrode structure. Afterwards, a quenching-cracking strategy is ingeniously employed to successfully construct parallel-aligned micron flow channels on electrode fibers in high agreement with the model, and the consistency of the flow channel structure is verified via deep learning technique. The well-constructed flow channels achieve high specific surface areas of electrodes while enabling the smooth flow of electrolyte over the fiber surfaces. Subsequent graphitization and sulfur-doping processes yield hierarchical fibers with highly conductive cores and well-active surfaces. Benefiting from fine structural modulation, the battery equipped with the as-prepared electrodes delivers an energy efficiency of 80.44 % at an ultra-high current density of 500 mA cm−2 and achieves a peak power density of 1.68 W cm−2. Additionally, the battery is consistently cycled for 1000 cycles at 500 mA cm−2 and the average energy efficiency decay is only 0.01032 % per cycle. Notably, finite element simulations are applied to investigate the velocity distribution of electrolyte in the flow channels, and first-principle calculations are employed to reveal the cause for energy efficiency decay of the battery after long-term cycling. Most importantly, the establishment of structure-activity relationships highlights the significance of comprehensive modulation of electrode fiber structures towards enhancing the performance of VRFBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CR7应助科研通管家采纳,获得20
1秒前
CR7应助科研通管家采纳,获得20
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
CR7应助科研通管家采纳,获得20
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
htt应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
annie完成签到,获得积分10
3秒前
gy042876发布了新的文献求助30
6秒前
七羽完成签到,获得积分10
7秒前
柠檬完成签到 ,获得积分10
8秒前
小鱼儿发布了新的文献求助10
8秒前
8秒前
小土豆完成签到 ,获得积分10
9秒前
10秒前
勤恳的黑夜完成签到 ,获得积分10
10秒前
10秒前
科目三应助crack采纳,获得10
11秒前
李小燕完成签到,获得积分10
13秒前
gy042876完成签到,获得积分10
14秒前
骤世界完成签到 ,获得积分10
15秒前
15秒前
用九发布了新的文献求助10
15秒前
LSxtd发布了新的文献求助30
16秒前
缥缈纲完成签到,获得积分10
18秒前
19秒前
yan1875完成签到,获得积分10
20秒前
思源应助欣欣采纳,获得10
21秒前
仿真小学生完成签到,获得积分10
21秒前
雍州小铁匠完成签到 ,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511078
关于积分的说明 11156200
捐赠科研通 3245691
什么是DOI,文献DOI怎么找? 1793100
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268