亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Drug-Target Interaction Prediction Using Multi-Head Self-Attention and Graph Attention Network

药物数据库 计算机科学 注意力网络 子序列 可解释性 人工智能 图形 机器学习 机制(生物学) 数据挖掘 药品 理论计算机科学 数学 心理学 数学分析 精神科 哲学 认识论 有界函数
作者
Zhongjian Cheng,Cheng Yan,Fang‐Xiang Wu,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 2208-2218 被引量:62
标识
DOI:10.1109/tcbb.2021.3077905
摘要

Identifying drug-target interactions (DTIs) is an important step in the process of new drug discovery and drug repositioning. Accurate predictions for DTIs can improve the efficiency in the drug discovery and development. Although rapid advances in deep learning technologies have generated various computational methods, it is still appealing to further investigate how to design efficient networks for predicting DTIs. In this study, we propose an end-to-end deep learning method (called MHSADTI) to predict DTIs based on the graph attention network and multi-head self-attention mechanism. First, the characteristics of drugs and proteins are extracted by the graph attention network and multi-head self-attention mechanism, respectively. Then, the attention scores are used to consider which amino acid subsequence in a protein is more important for the drug to predict its interactions. Finally, we predict DTIs by a fully connected layer after obtaining the feature vectors of drugs and proteins. MHSADTI takes advantage of self-attention mechanism for obtaining long-dependent contextual relationship in amino acid sequences and predicting DTI interpretability. More effective molecular characteristics are also obtained by the attention mechanism in graph attention networks. Multiple cross validation experiments are adopted to assess the performance of our MHSADTI. The experiments on four datasets, human, C.elegans , DUD-E and DrugBank show our method outperforms the state-of-the-art methods in terms of AUC, Precision, Recall, AUPR and F1-score. In addition, the case studies further demonstrate that our method can provide effective visualizations to interpret the prediction results from biological insights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scuter完成签到,获得积分10
2秒前
7秒前
11秒前
12秒前
nsc发布了新的文献求助30
12秒前
bbdd2334发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
18秒前
27秒前
小马甲应助nsc采纳,获得10
30秒前
54秒前
Rabbit发布了新的文献求助10
57秒前
1分钟前
1分钟前
kaka完成签到,获得积分10
1分钟前
nsc发布了新的文献求助10
1分钟前
思源应助nsc采纳,获得10
1分钟前
酷波er应助Rabbit采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
Rabbit完成签到,获得积分10
2分钟前
2分钟前
nsc发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
ICE_MILK发布了新的文献求助10
3分钟前
郗妫完成签到,获得积分10
4分钟前
4分钟前
ICE_MILK完成签到,获得积分10
4分钟前
jarrykim完成签到,获得积分10
4分钟前
勿惏发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
kaka发布了新的文献求助10
5分钟前
5分钟前
5分钟前
完美世界应助勿惏采纳,获得10
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503067
关于积分的说明 11111230
捐赠科研通 3234096
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264