Transforming CO2 into Methanol with N-Heterocyclic Carbene-Stabilized Coinage Metal Hydrides Immobilized in a Metal–Organic Framework UiO-68

催化作用 卡宾 电负性 氢化物 金属有机骨架 密度泛函理论 材料科学 双金属片 配体(生物化学) 甲醇 组合化学 金属 计算化学 化学 物理化学 有机化学 吸附 受体 生物化学
作者
Kuiwei Yang,Jianwen Jiang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (49): 58723-58736 被引量:23
标识
DOI:10.1021/acsami.1c18885
摘要

By synergizing the advantages of homogeneous and heterogeneous catalysis, single-site heterogeneous catalysis represents a highly promising opportunity for many catalytic processes. Particularly, the unprecedented designability and versatility of metal-organic frameworks (MOFs) promote them as salient platforms for designing single-site catalytic materials by introducing isolated, well-defined active sites into the frameworks. Herein, we design new MOF-supported single-site catalysts for CO2 hydrogenation to methanol (CH3OH), a reaction of great significance in CO2 valorization. Specifically, N-heterocyclic carbene (NHC), a class of excellent modifiers and anchors, is used to anchor coinage metal hydrides M(I)-H (M = Cu, Ag, and Au) onto the organic linker of UiO-68. The strong metal-ligand interactions between NHC and M(I)-H verify the robustness and feasibility of our design strategy. On the tailor-made catalysts, a three-stage sequential transformation is proposed for CH3OH synthesis with HCOOH and HCHO as the transit intermediates. A density functional theory-based comparative study suggests that UiO-68 decorated with NHC-Cu(I)-H performs best for CO2 hydrogenation to HCOOH. This is further rationalized by three linear relationships for the Gibbs energy barrier of CO2 hydrogenation to HCOO intermediate, the first with the NBO charge of the hydride in NHC-M(I)-H, the second with the electronegativity of M, and the third with the gap between the lowest unoccupied molecular orbital of CO2 and the highest occupied molecular orbital of the catalyst. It is confirmed that the high efficiency of MOF-supported NHC-Cu(I)-H for CO2 transformation to CH3OH is via the proposed three-stage mechanism, and in each stage, the step involving heterolytic dissociation of H2 together with product generation is the most energy-intensive. The rate-limiting step in the entire mechanism is identified to be H2 dissociation accompanying with simultaneous HCHO and H2O formation. Altogether, the tailor-made UiO-68 decorated with NHC-Cu(I)-H features well-defined active sites, enables precise manipulation of reaction paths, and demonstrates excellent reactivity for CO2 hydrogenation to CH3OH. It is also predicted to surpass a recently reported MOF-808 catalyst consisting of neighboring Zn2+-O-Zr4+ sites. The designed MOFs as well as the proposed strategy here establish a new paradigm and can be extended to other hydrogenation reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jmting完成签到,获得积分20
1秒前
1秒前
2秒前
CodeCraft应助Cheng采纳,获得10
3秒前
lllll发布了新的文献求助10
3秒前
醉熏的玉兰完成签到,获得积分10
4秒前
甜蜜静白完成签到,获得积分20
4秒前
Jmting发布了新的文献求助10
5秒前
5秒前
snutcc发布了新的文献求助10
6秒前
勤奋大地完成签到,获得积分10
8秒前
10秒前
10秒前
11秒前
CodeCraft应助totoro采纳,获得10
13秒前
JlkD发布了新的文献求助10
13秒前
Lucas应助XL神放采纳,获得10
14秒前
搜集达人应助曼城是冠军采纳,获得10
14秒前
15秒前
17秒前
善学以致用应助080206ws采纳,获得10
17秒前
17秒前
pfuhh发布了新的文献求助10
19秒前
Dengdeng发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
25秒前
25秒前
fan完成签到 ,获得积分10
25秒前
冰之完成签到,获得积分10
26秒前
smalldesk完成签到,获得积分10
26秒前
万能图书馆应助!!采纳,获得10
27秒前
080206ws发布了新的文献求助10
29秒前
汤汤完成签到,获得积分10
29秒前
好运绵绵完成签到 ,获得积分10
29秒前
啾啾啾完成签到,获得积分20
30秒前
李明关注了科研通微信公众号
31秒前
sujingbo完成签到 ,获得积分10
31秒前
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234