亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for the intelligent analysis of 3D printing conditions using environmental sensor data to support quality assurance

过度拟合 质量保证 过程(计算) 灵敏度(控制系统) 压力传感器 机器学习 数据挖掘 熔融沉积模型 计算机科学 人工智能 材料科学 工艺工程 3D打印 机械工程 工程类 人工神经网络 电子工程 操作系统 外部质量评估 运营管理
作者
Erik Westphal,Hermann Seitz
出处
期刊:Additive manufacturing [Elsevier]
卷期号:50: 102535-102535 被引量:7
标识
DOI:10.1016/j.addma.2021.102535
摘要

Process and environmental parameters that influence manufacturing processes and results are of great importance in additive manufacturing processes such as Fused Deposition Modeling (FDM). The recording and analysis of these parameters is an important task of quality assurance (QA). For this purpose, sensors are increasingly used, which continuously record the environmental data during the printing process. Subsequently, algorithms for machine learning (ML) are suitable for the data analysis of data sequences as well as for the intelligent classification of the results in defined 3D printing condition classes. In this paper different state-of-the-art ML algorithms are presented, which enable a supervised learning classification approach of environmental sensor data (temperature, humidity, air pressure, gas particles) in the FDM process. For this purpose, a new data preparation method was developed which sequences different sensor time series data. FDM sensor parameters of various 3D printing conditions were recorded, preprocessed accordingly and saved in two differently sized datasets. Furthermore, a sensitivity analysis was carried out in order to examine the influence of the individual sensor parameters on the ML analyses. Interestingly, the air pressure values were characterized as being most relevant to the analyses. Better results were always achieved with the air pressure values than without. The air pressure values have a stabilizing effect on the analyses and reduce overfitting. In the further course of the investigations, tests were carried out on the two datasets of different sizes with all considered ML algorithms as well as tests with and without the air pressure values. There, the modern XceptionTime architecture has proven to be the most effective and robust against overfitting. XceptionTime can achieve excellent results with a minimum of 95% accuracy with both a small and a large database. The Macro F1-Scores are also always above 89% and indicate a good classification for all 3D printing conditions examined. The ML investigations were then compared in a proof of concept with 3D scan examinations established in quality assurance. The 3D scans of the printed FDM components could not provide any clear information about the different printing conditions and only the component surface could be analyzed. The ML analyses, especially with the XceptionTime architecture, enable an effective alternative to quickly and easily differentiate between different 3D printing conditions. The ML time series classification presented in this work is accordingly well suited for use in an industrial environment and, with special optimizations, can be effectively applied in practice to support quality assurance in additive manufacturing. This quality assurance approach is completely new and offers immense potential to increase trust in and acceptance of additive manufacturing processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形问萍完成签到,获得积分10
2秒前
wanci应助科研通管家采纳,获得10
1分钟前
华仔应助机灵自中采纳,获得10
1分钟前
背后访风完成签到 ,获得积分10
2分钟前
LUMO完成签到 ,获得积分10
3分钟前
Tei完成签到,获得积分10
3分钟前
3分钟前
英俊的铭应助阿a采纳,获得10
4分钟前
4分钟前
阿a发布了新的文献求助10
4分钟前
moom完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
赘婿应助科研通管家采纳,获得30
5分钟前
马梦秋发布了新的文献求助10
5分钟前
5分钟前
6分钟前
6分钟前
充电宝应助欢呼的寻双采纳,获得10
6分钟前
CodeCraft应助泓凯骏采纳,获得10
6分钟前
6分钟前
泓凯骏发布了新的文献求助10
6分钟前
淡定落雁发布了新的文献求助30
6分钟前
淡定落雁完成签到,获得积分10
6分钟前
ninomae完成签到 ,获得积分10
6分钟前
7分钟前
哲别发布了新的文献求助10
7分钟前
8分钟前
8分钟前
哲别发布了新的文献求助10
8分钟前
小二郎应助哲别采纳,获得10
8分钟前
Wish完成签到,获得积分10
8分钟前
菜菜完成签到,获得积分10
10分钟前
10分钟前
菜菜发布了新的文献求助10
10分钟前
Jayden完成签到 ,获得积分10
11分钟前
13分钟前
思源应助科研通管家采纳,获得10
13分钟前
iamzhangly30hyit完成签到 ,获得积分10
13分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784146
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299705
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997