亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for the intelligent analysis of 3D printing conditions using environmental sensor data to support quality assurance

过度拟合 质量保证 过程(计算) 灵敏度(控制系统) 压力传感器 机器学习 数据挖掘 熔融沉积模型 计算机科学 人工智能 材料科学 工艺工程 3D打印 机械工程 工程类 人工神经网络 电子工程 操作系统 外部质量评估 运营管理
作者
Erik Westphal,Hermann Seitz
出处
期刊:Additive manufacturing [Elsevier]
卷期号:50: 102535-102535 被引量:7
标识
DOI:10.1016/j.addma.2021.102535
摘要

Process and environmental parameters that influence manufacturing processes and results are of great importance in additive manufacturing processes such as Fused Deposition Modeling (FDM). The recording and analysis of these parameters is an important task of quality assurance (QA). For this purpose, sensors are increasingly used, which continuously record the environmental data during the printing process. Subsequently, algorithms for machine learning (ML) are suitable for the data analysis of data sequences as well as for the intelligent classification of the results in defined 3D printing condition classes. In this paper different state-of-the-art ML algorithms are presented, which enable a supervised learning classification approach of environmental sensor data (temperature, humidity, air pressure, gas particles) in the FDM process. For this purpose, a new data preparation method was developed which sequences different sensor time series data. FDM sensor parameters of various 3D printing conditions were recorded, preprocessed accordingly and saved in two differently sized datasets. Furthermore, a sensitivity analysis was carried out in order to examine the influence of the individual sensor parameters on the ML analyses. Interestingly, the air pressure values were characterized as being most relevant to the analyses. Better results were always achieved with the air pressure values than without. The air pressure values have a stabilizing effect on the analyses and reduce overfitting. In the further course of the investigations, tests were carried out on the two datasets of different sizes with all considered ML algorithms as well as tests with and without the air pressure values. There, the modern XceptionTime architecture has proven to be the most effective and robust against overfitting. XceptionTime can achieve excellent results with a minimum of 95% accuracy with both a small and a large database. The Macro F1-Scores are also always above 89% and indicate a good classification for all 3D printing conditions examined. The ML investigations were then compared in a proof of concept with 3D scan examinations established in quality assurance. The 3D scans of the printed FDM components could not provide any clear information about the different printing conditions and only the component surface could be analyzed. The ML analyses, especially with the XceptionTime architecture, enable an effective alternative to quickly and easily differentiate between different 3D printing conditions. The ML time series classification presented in this work is accordingly well suited for use in an industrial environment and, with special optimizations, can be effectively applied in practice to support quality assurance in additive manufacturing. This quality assurance approach is completely new and offers immense potential to increase trust in and acceptance of additive manufacturing processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
王钢铁发布了新的文献求助10
10秒前
piupiu完成签到,获得积分10
15秒前
选波完成签到,获得积分20
19秒前
情怀应助tlj0808采纳,获得20
24秒前
Criminology34应助科研通管家采纳,获得10
33秒前
Criminology34应助科研通管家采纳,获得10
34秒前
隐形曼青应助选波采纳,获得10
35秒前
王钢铁完成签到,获得积分10
42秒前
侯锐淇完成签到 ,获得积分10
45秒前
1分钟前
选波发布了新的文献求助10
1分钟前
CodeCraft应助陈坤采纳,获得10
1分钟前
1分钟前
liu发布了新的文献求助10
1分钟前
1分钟前
小破名发布了新的文献求助10
1分钟前
小不点发布了新的文献求助10
1分钟前
liu完成签到,获得积分10
1分钟前
1分钟前
思源应助小破名采纳,获得10
1分钟前
吾日三省吾身完成签到 ,获得积分10
1分钟前
1分钟前
Viiigo完成签到,获得积分10
2分钟前
tlj0808发布了新的文献求助20
2分钟前
2分钟前
陈玺丞发布了新的文献求助30
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
2分钟前
陈坤发布了新的文献求助10
2分钟前
SciGPT应助选波采纳,获得10
2分钟前
j7完成签到 ,获得积分10
3分钟前
3分钟前
思源应助tlj0808采纳,获得20
3分钟前
选波发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Jasper应助选波采纳,获得10
3分钟前
笔墨纸砚完成签到 ,获得积分10
3分钟前
重要元灵完成签到,获得积分10
3分钟前
陈坤发布了新的文献求助10
3分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644645
求助须知:如何正确求助?哪些是违规求助? 4764877
关于积分的说明 15025423
捐赠科研通 4803014
什么是DOI,文献DOI怎么找? 2567817
邀请新用户注册赠送积分活动 1525416
关于科研通互助平台的介绍 1484958