Machine learning for the intelligent analysis of 3D printing conditions using environmental sensor data to support quality assurance

过度拟合 质量保证 过程(计算) 灵敏度(控制系统) 压力传感器 机器学习 数据挖掘 熔融沉积模型 计算机科学 人工智能 材料科学 工艺工程 3D打印 机械工程 工程类 人工神经网络 电子工程 操作系统 外部质量评估 运营管理
作者
Erik Westphal,Hermann Seitz
出处
期刊:Additive manufacturing [Elsevier BV]
卷期号:50: 102535-102535 被引量:7
标识
DOI:10.1016/j.addma.2021.102535
摘要

Process and environmental parameters that influence manufacturing processes and results are of great importance in additive manufacturing processes such as Fused Deposition Modeling (FDM). The recording and analysis of these parameters is an important task of quality assurance (QA). For this purpose, sensors are increasingly used, which continuously record the environmental data during the printing process. Subsequently, algorithms for machine learning (ML) are suitable for the data analysis of data sequences as well as for the intelligent classification of the results in defined 3D printing condition classes. In this paper different state-of-the-art ML algorithms are presented, which enable a supervised learning classification approach of environmental sensor data (temperature, humidity, air pressure, gas particles) in the FDM process. For this purpose, a new data preparation method was developed which sequences different sensor time series data. FDM sensor parameters of various 3D printing conditions were recorded, preprocessed accordingly and saved in two differently sized datasets. Furthermore, a sensitivity analysis was carried out in order to examine the influence of the individual sensor parameters on the ML analyses. Interestingly, the air pressure values were characterized as being most relevant to the analyses. Better results were always achieved with the air pressure values than without. The air pressure values have a stabilizing effect on the analyses and reduce overfitting. In the further course of the investigations, tests were carried out on the two datasets of different sizes with all considered ML algorithms as well as tests with and without the air pressure values. There, the modern XceptionTime architecture has proven to be the most effective and robust against overfitting. XceptionTime can achieve excellent results with a minimum of 95% accuracy with both a small and a large database. The Macro F1-Scores are also always above 89% and indicate a good classification for all 3D printing conditions examined. The ML investigations were then compared in a proof of concept with 3D scan examinations established in quality assurance. The 3D scans of the printed FDM components could not provide any clear information about the different printing conditions and only the component surface could be analyzed. The ML analyses, especially with the XceptionTime architecture, enable an effective alternative to quickly and easily differentiate between different 3D printing conditions. The ML time series classification presented in this work is accordingly well suited for use in an industrial environment and, with special optimizations, can be effectively applied in practice to support quality assurance in additive manufacturing. This quality assurance approach is completely new and offers immense potential to increase trust in and acceptance of additive manufacturing processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hehe发布了新的文献求助10
1秒前
流口水完成签到,获得积分10
1秒前
1秒前
寒冷靖易完成签到,获得积分10
3秒前
LU完成签到,获得积分10
3秒前
平淡雁荷完成签到,获得积分10
3秒前
魔女完成签到,获得积分10
4秒前
要笑完成签到,获得积分10
4秒前
5秒前
Joyj99完成签到,获得积分10
5秒前
称心幼荷完成签到,获得积分10
6秒前
无花果应助飞快的诗槐采纳,获得10
6秒前
小王同学完成签到 ,获得积分10
6秒前
6秒前
完美世界应助JMrider采纳,获得10
7秒前
laola发布了新的文献求助10
7秒前
Mine发布了新的文献求助10
7秒前
柴yuki完成签到 ,获得积分10
8秒前
贪玩丸子完成签到,获得积分10
8秒前
狗窝里的猫yan完成签到,获得积分10
8秒前
9秒前
没有蛀牙完成签到,获得积分10
10秒前
10秒前
酶没美镁完成签到,获得积分10
11秒前
11秒前
Lwxbb完成签到,获得积分10
12秒前
科目三应助搬砖人采纳,获得200
12秒前
安然发布了新的文献求助10
12秒前
SweetyANN完成签到,获得积分10
13秒前
13秒前
勤劳溪灵完成签到,获得积分10
13秒前
13秒前
夏姬宁静发布了新的文献求助10
14秒前
情怀应助无所吊谓采纳,获得10
14秒前
Active完成签到,获得积分10
14秒前
scholars完成签到,获得积分10
15秒前
ohno耶耶耶发布了新的文献求助10
16秒前
SweetyANN发布了新的文献求助10
16秒前
16秒前
niceweiwei发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874