Prestack correlative elastic least-squares reverse time migration based on wavefield decomposition

地震偏移 叠前 残余物 算法 相关 波形 计算机科学 最小二乘函数近似 数学 地质学 估计员 地震学 电信 语言学 哲学 雷达 统计
作者
Ying Shi,Songling Li,Wei Zhang
出处
期刊:Journal of Applied Geophysics [Elsevier]
卷期号:194: 104447-104447 被引量:4
标识
DOI:10.1016/j.jappgeo.2021.104447
摘要

Standard elastic least-squares reverse time migration (ELSRTM) can iteratively improve the quality of stacked reflection images of P- and S-wave impedance by minimizing the L2 norm of waveform residual. However, the resulting images are sensitive to the velocity errors and amplitude errors in the observed data. Moreover, the crosstalk artifacts created by the different wave modes may degrade the imaging quality. To mitigate these problems, a correlative ELSRTM approach based on wavefield decomposition and prestack implementation is developed. This approach includes two key points. The first is that the proposed approach aims at finding the optimal reflection images for each shot recording via minimizing the normalized zero-lag cross-correlation objective function. The final reflection images can be produced by summing the optimal reflection images for all shot recordings. The second is that we develop a wavefield decomposition scheme, which is compatible with the correlative ELSRTM approach, as a gradient precondition to reduce crosstalk artifacts and accelerate the convergence. Numerical examples using several 2D experiments have determined that the proposed ELSRTM approach can provide higher quality images with fewer crosstalk artifacts, compared to the correlative ELSRTM approach without wavefield decomposition. Furthermore, it is less sensitive to velocity errors than the poststack correlative ELSRTM approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
九月发布了新的文献求助10
刚刚
LIXN发布了新的文献求助10
1秒前
2秒前
科研通AI2S应助cc采纳,获得10
2秒前
善学以致用应助嘻嘻采纳,获得10
2秒前
不安青牛应助超级香之采纳,获得10
3秒前
木小檀完成签到,获得积分10
4秒前
iNk应助mm采纳,获得10
4秒前
blush发布了新的文献求助10
5秒前
七九发布了新的文献求助10
5秒前
情怀应助山海采纳,获得10
6秒前
6秒前
7秒前
步步高发布了新的文献求助20
8秒前
9秒前
9秒前
10秒前
10秒前
kxdr完成签到,获得积分10
11秒前
刘果果发布了新的文献求助200
11秒前
11秒前
Lucas应助blush采纳,获得10
11秒前
华仔应助科研小白要毕业采纳,获得10
11秒前
12秒前
潦草发布了新的文献求助10
14秒前
15秒前
jiayile发布了新的文献求助30
15秒前
kaki发布了新的文献求助10
15秒前
你的发布了新的文献求助10
16秒前
无奈满天发布了新的文献求助10
16秒前
19秒前
19秒前
19秒前
爱吃汉堡的yyq完成签到,获得积分10
20秒前
21秒前
今后应助jia若采纳,获得20
21秒前
zhangh65完成签到,获得积分10
21秒前
squirrelcone完成签到 ,获得积分10
22秒前
LIXN完成签到,获得积分10
22秒前
温婉的凝雁完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459295
求助须知:如何正确求助?哪些是违规求助? 3053785
关于积分的说明 9038498
捐赠科研通 2743130
什么是DOI,文献DOI怎么找? 1504671
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664