MAResNet: predicting transcription factor binding sites by combining multi-scale bottom-up and top-down attention and residual network

转录因子 计算机科学 残余物 深度学习 DNA结合位点 人工智能 计算生物学 自上而下和自下而上的设计 比例(比率) 数据挖掘 机器学习 模式识别(心理学) 人工神经网络
作者
Ke Han,Long-Chen Shen,Yi-Heng Zhu,Jian Xu,Jiangning Song,Dong-Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:1
标识
DOI:10.1093/bib/bbab445
摘要

Accurate identification of transcription factor binding sites is of great significance in understanding gene expression, biological development and drug design. Although a variety of methods based on deep-learning models and large-scale data have been developed to predict transcription factor binding sites in DNA sequences, there is room for further improvement in prediction performance. In addition, effective interpretation of deep-learning models is greatly desirable. Here we present MAResNet, a new deep-learning method, for predicting transcription factor binding sites on 690 ChIP-seq datasets. More specifically, MAResNet combines the bottom-up and top-down attention mechanisms and a state-of-the-art feed-forward network (ResNet), which is constructed by stacking attention modules that generate attention-aware features. In particular, the multi-scale attention mechanism is utilized at the first stage to extract rich and representative sequence features. We further discuss the attention-aware features learned from different attention modules in accordance with the changes as the layers go deeper. The features learned by MAResNet are also visualized through the TMAP tool to illustrate that the method can extract the unique characteristics of transcription factor binding sites. The performance of MAResNet is extensively tested on 690 test subsets with an average AUC of 0.927, which is higher than that of the current state-of-the-art methods. Overall, this study provides a new and useful framework for the prediction of transcription factor binding sites by combining the funnel attention modules with the residual network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wanting发布了新的文献求助10
刚刚
jidong完成签到,获得积分10
1秒前
哈皮波完成签到,获得积分10
3秒前
evilpiso发布了新的文献求助30
3秒前
3秒前
峰李发布了新的文献求助10
3秒前
4秒前
SciGPT应助wangqing采纳,获得10
5秒前
smart完成签到,获得积分10
6秒前
汉堡包应助77采纳,获得10
6秒前
大气的画板完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
DiJia驳回了传奇3应助
8秒前
希望天下0贩的0应助tier3采纳,获得10
8秒前
星辰大海应助种花兔采纳,获得10
9秒前
9秒前
王舒文完成签到,获得积分10
9秒前
666发布了新的文献求助10
10秒前
叮当发布了新的文献求助10
11秒前
Owen应助t250采纳,获得10
11秒前
11秒前
12秒前
善学以致用应助123采纳,获得10
14秒前
尹梦成应助乐观的大树采纳,获得10
15秒前
虚拟的如发布了新的文献求助10
16秒前
blingcmeng完成签到,获得积分10
16秒前
清爽的芹菜完成签到,获得积分10
17秒前
17秒前
wangqing发布了新的文献求助10
17秒前
18秒前
cjm发布了新的文献求助10
19秒前
19秒前
19秒前
NexusExplorer应助123采纳,获得10
20秒前
在水一方应助早睡早起采纳,获得10
21秒前
22秒前
Bubble完成签到,获得积分10
22秒前
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226542
求助须知:如何正确求助?哪些是违规求助? 4398011
关于积分的说明 13688099
捐赠科研通 4262554
什么是DOI,文献DOI怎么找? 2339214
邀请新用户注册赠送积分活动 1336581
关于科研通互助平台的介绍 1292603