MAResNet: predicting transcription factor binding sites by combining multi-scale bottom-up and top-down attention and residual network

转录因子 计算机科学 残余物 深度学习 DNA结合位点 人工智能 计算生物学 自上而下和自下而上的设计 比例(比率) 数据挖掘 机器学习 模式识别(心理学) 人工神经网络
作者
Ke Han,Long-Chen Shen,Yi-Heng Zhu,Jian Xu,Jiangning Song,Dong-Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:1
标识
DOI:10.1093/bib/bbab445
摘要

Accurate identification of transcription factor binding sites is of great significance in understanding gene expression, biological development and drug design. Although a variety of methods based on deep-learning models and large-scale data have been developed to predict transcription factor binding sites in DNA sequences, there is room for further improvement in prediction performance. In addition, effective interpretation of deep-learning models is greatly desirable. Here we present MAResNet, a new deep-learning method, for predicting transcription factor binding sites on 690 ChIP-seq datasets. More specifically, MAResNet combines the bottom-up and top-down attention mechanisms and a state-of-the-art feed-forward network (ResNet), which is constructed by stacking attention modules that generate attention-aware features. In particular, the multi-scale attention mechanism is utilized at the first stage to extract rich and representative sequence features. We further discuss the attention-aware features learned from different attention modules in accordance with the changes as the layers go deeper. The features learned by MAResNet are also visualized through the TMAP tool to illustrate that the method can extract the unique characteristics of transcription factor binding sites. The performance of MAResNet is extensively tested on 690 test subsets with an average AUC of 0.927, which is higher than that of the current state-of-the-art methods. Overall, this study provides a new and useful framework for the prediction of transcription factor binding sites by combining the funnel attention modules with the residual network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
如意的惮完成签到,获得积分20
1秒前
2秒前
2秒前
Tonald Yang发布了新的文献求助10
3秒前
科研界的恩希玛完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
Owen应助guoguo1119采纳,获得10
5秒前
5秒前
感动归尘完成签到,获得积分10
5秒前
6秒前
Special077完成签到,获得积分10
6秒前
任性友安发布了新的文献求助10
6秒前
6秒前
6秒前
浚稚发布了新的文献求助10
6秒前
天天快乐应助Herbs采纳,获得10
9秒前
9秒前
领导范儿应助忧伤的含蕾采纳,获得10
9秒前
自然的千青完成签到,获得积分10
9秒前
小吴发布了新的文献求助10
10秒前
FY发布了新的文献求助10
10秒前
10秒前
10秒前
小柠檬发布了新的文献求助10
10秒前
10秒前
zhan发布了新的文献求助10
11秒前
所所应助KK采纳,获得10
11秒前
冯二完成签到,获得积分10
11秒前
科目三应助姜临药采纳,获得10
12秒前
张有志关注了科研通微信公众号
12秒前
12秒前
Hades完成签到,获得积分10
12秒前
大气鹰发布了新的文献求助10
12秒前
chlorine完成签到,获得积分10
13秒前
FashionBoy应助赢一把去睡觉采纳,获得30
13秒前
13秒前
wuming发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905490
求助须知:如何正确求助?哪些是违规求助? 4183360
关于积分的说明 12990057
捐赠科研通 3949603
什么是DOI,文献DOI怎么找? 2166023
邀请新用户注册赠送积分活动 1184504
关于科研通互助平台的介绍 1090823