亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MAResNet: predicting transcription factor binding sites by combining multi-scale bottom-up and top-down attention and residual network

转录因子 计算机科学 残余物 深度学习 DNA结合位点 人工智能 计算生物学 自上而下和自下而上的设计 比例(比率) 数据挖掘 机器学习 模式识别(心理学) 人工神经网络
作者
Ke Han,Long-Chen Shen,Yi-Heng Zhu,Jian Xu,Jiangning Song,Dong-Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:1
标识
DOI:10.1093/bib/bbab445
摘要

Accurate identification of transcription factor binding sites is of great significance in understanding gene expression, biological development and drug design. Although a variety of methods based on deep-learning models and large-scale data have been developed to predict transcription factor binding sites in DNA sequences, there is room for further improvement in prediction performance. In addition, effective interpretation of deep-learning models is greatly desirable. Here we present MAResNet, a new deep-learning method, for predicting transcription factor binding sites on 690 ChIP-seq datasets. More specifically, MAResNet combines the bottom-up and top-down attention mechanisms and a state-of-the-art feed-forward network (ResNet), which is constructed by stacking attention modules that generate attention-aware features. In particular, the multi-scale attention mechanism is utilized at the first stage to extract rich and representative sequence features. We further discuss the attention-aware features learned from different attention modules in accordance with the changes as the layers go deeper. The features learned by MAResNet are also visualized through the TMAP tool to illustrate that the method can extract the unique characteristics of transcription factor binding sites. The performance of MAResNet is extensively tested on 690 test subsets with an average AUC of 0.927, which is higher than that of the current state-of-the-art methods. Overall, this study provides a new and useful framework for the prediction of transcription factor binding sites by combining the funnel attention modules with the residual network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常以云完成签到 ,获得积分10
20秒前
23秒前
34秒前
37秒前
傅嘉庆发布了新的文献求助10
38秒前
小白发布了新的文献求助10
43秒前
1分钟前
不安青牛应助zhangxiaoqing采纳,获得10
1分钟前
小马甲应助傅嘉庆采纳,获得10
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
1分钟前
xxi发布了新的文献求助10
1分钟前
大模型应助Chloe采纳,获得10
1分钟前
小白完成签到 ,获得积分10
1分钟前
爆米花应助啦啦啦采纳,获得10
2分钟前
Jasper应助哈皮波采纳,获得10
2分钟前
2分钟前
哈皮波发布了新的文献求助10
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
Chloe发布了新的文献求助10
2分钟前
开放道天发布了新的文献求助30
3分钟前
3分钟前
3分钟前
鱼鱼片片发布了新的文献求助10
3分钟前
啦啦啦发布了新的文献求助10
3分钟前
852应助开放道天采纳,获得10
3分钟前
啦啦啦完成签到,获得积分10
3分钟前
bbbbb发布了新的文献求助30
3分钟前
bbbbb完成签到,获得积分10
4分钟前
wwe完成签到,获得积分10
4分钟前
不能吃太饱完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
深情安青应助科研通管家采纳,获得10
4分钟前
不安青牛应助zhangxiaoqing采纳,获得10
5分钟前
6分钟前
ffff完成签到 ,获得积分10
6分钟前
田様应助科研通管家采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681725
求助须知:如何正确求助?哪些是违规求助? 5012386
关于积分的说明 15176015
捐赠科研通 4841250
什么是DOI,文献DOI怎么找? 2595040
邀请新用户注册赠送积分活动 1548025
关于科研通互助平台的介绍 1506079