清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MAResNet: predicting transcription factor binding sites by combining multi-scale bottom-up and top-down attention and residual network

转录因子 计算机科学 残余物 深度学习 DNA结合位点 人工智能 计算生物学 自上而下和自下而上的设计 比例(比率) 数据挖掘 机器学习 模式识别(心理学) 人工神经网络
作者
Ke Han,Long-Chen Shen,Yi-Heng Zhu,Jian Xu,Jiangning Song,Dong-Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:1
标识
DOI:10.1093/bib/bbab445
摘要

Accurate identification of transcription factor binding sites is of great significance in understanding gene expression, biological development and drug design. Although a variety of methods based on deep-learning models and large-scale data have been developed to predict transcription factor binding sites in DNA sequences, there is room for further improvement in prediction performance. In addition, effective interpretation of deep-learning models is greatly desirable. Here we present MAResNet, a new deep-learning method, for predicting transcription factor binding sites on 690 ChIP-seq datasets. More specifically, MAResNet combines the bottom-up and top-down attention mechanisms and a state-of-the-art feed-forward network (ResNet), which is constructed by stacking attention modules that generate attention-aware features. In particular, the multi-scale attention mechanism is utilized at the first stage to extract rich and representative sequence features. We further discuss the attention-aware features learned from different attention modules in accordance with the changes as the layers go deeper. The features learned by MAResNet are also visualized through the TMAP tool to illustrate that the method can extract the unique characteristics of transcription factor binding sites. The performance of MAResNet is extensively tested on 690 test subsets with an average AUC of 0.927, which is higher than that of the current state-of-the-art methods. Overall, this study provides a new and useful framework for the prediction of transcription factor binding sites by combining the funnel attention modules with the residual network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
poki完成签到 ,获得积分10
18秒前
30秒前
dracovu完成签到,获得积分10
32秒前
37秒前
着急的翠彤完成签到,获得积分20
53秒前
彦成完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
狂野的含烟完成签到 ,获得积分10
1分钟前
2分钟前
黑昼发布了新的文献求助10
2分钟前
隐形曼青应助黑昼采纳,获得10
2分钟前
飞天大南瓜完成签到,获得积分10
2分钟前
刘刘完成签到 ,获得积分10
3分钟前
3分钟前
new1完成签到,获得积分10
3分钟前
jing完成签到,获得积分20
3分钟前
大喜喜发布了新的文献求助10
3分钟前
沙海沉戈完成签到,获得积分0
3分钟前
阿俊完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
ceeray23发布了新的文献求助20
4分钟前
SciGPT应助ceeray23采纳,获得20
4分钟前
arniu2008完成签到,获得积分20
4分钟前
4分钟前
soilbeginner发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
直率的笑翠完成签到 ,获得积分10
5分钟前
soilbeginner完成签到,获得积分20
5分钟前
莫miang完成签到,获得积分10
6分钟前
不器完成签到 ,获得积分10
6分钟前
自律完成签到,获得积分10
7分钟前
7分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771569
捐赠科研通 4614267
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531