MAResNet: predicting transcription factor binding sites by combining multi-scale bottom-up and top-down attention and residual network

转录因子 计算机科学 残余物 深度学习 DNA结合位点 人工智能 计算生物学 自上而下和自下而上的设计 比例(比率) 数据挖掘 机器学习 模式识别(心理学) 人工神经网络
作者
Ke Han,Long-Chen Shen,Yi-Heng Zhu,Jian Xu,Jiangning Song,Dong-Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:1
标识
DOI:10.1093/bib/bbab445
摘要

Accurate identification of transcription factor binding sites is of great significance in understanding gene expression, biological development and drug design. Although a variety of methods based on deep-learning models and large-scale data have been developed to predict transcription factor binding sites in DNA sequences, there is room for further improvement in prediction performance. In addition, effective interpretation of deep-learning models is greatly desirable. Here we present MAResNet, a new deep-learning method, for predicting transcription factor binding sites on 690 ChIP-seq datasets. More specifically, MAResNet combines the bottom-up and top-down attention mechanisms and a state-of-the-art feed-forward network (ResNet), which is constructed by stacking attention modules that generate attention-aware features. In particular, the multi-scale attention mechanism is utilized at the first stage to extract rich and representative sequence features. We further discuss the attention-aware features learned from different attention modules in accordance with the changes as the layers go deeper. The features learned by MAResNet are also visualized through the TMAP tool to illustrate that the method can extract the unique characteristics of transcription factor binding sites. The performance of MAResNet is extensively tested on 690 test subsets with an average AUC of 0.927, which is higher than that of the current state-of-the-art methods. Overall, this study provides a new and useful framework for the prediction of transcription factor binding sites by combining the funnel attention modules with the residual network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
666发布了新的文献求助10
2秒前
简简简发布了新的文献求助10
3秒前
3秒前
4秒前
黄景阳完成签到 ,获得积分10
4秒前
生椰拿铁完成签到,获得积分10
5秒前
ssj完成签到,获得积分10
5秒前
白云四季发布了新的文献求助10
6秒前
归尘发布了新的文献求助10
6秒前
6秒前
稳重听双发布了新的文献求助10
6秒前
xia完成签到 ,获得积分10
7秒前
7秒前
Akim应助迷人的帅哥采纳,获得10
8秒前
9秒前
木又应助刘隽轩采纳,获得10
9秒前
量子星尘发布了新的文献求助30
10秒前
简简简完成签到,获得积分10
11秒前
12秒前
action完成签到 ,获得积分10
12秒前
12秒前
学不懂数学完成签到,获得积分10
13秒前
15秒前
Loki完成签到,获得积分10
15秒前
Tokgo完成签到,获得积分10
15秒前
15秒前
15秒前
慧慧发布了新的文献求助10
17秒前
17秒前
稳重听双完成签到,获得积分10
17秒前
17秒前
海中有月完成签到 ,获得积分10
18秒前
bkagyin应助白云四季采纳,获得10
18秒前
CipherSage应助dd36采纳,获得10
18秒前
20秒前
21秒前
彭于晏应助AAA工位主理人采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424683
求助须知:如何正确求助?哪些是违规求助? 4539082
关于积分的说明 14165073
捐赠科研通 4456131
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483