MAResNet: predicting transcription factor binding sites by combining multi-scale bottom-up and top-down attention and residual network

转录因子 计算机科学 残余物 深度学习 DNA结合位点 人工智能 计算生物学 自上而下和自下而上的设计 比例(比率) 数据挖掘 机器学习 模式识别(心理学) 人工神经网络
作者
Ke Han,Long-Chen Shen,Yi-Heng Zhu,Jian Xu,Jiangning Song,Dong-Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:1
标识
DOI:10.1093/bib/bbab445
摘要

Accurate identification of transcription factor binding sites is of great significance in understanding gene expression, biological development and drug design. Although a variety of methods based on deep-learning models and large-scale data have been developed to predict transcription factor binding sites in DNA sequences, there is room for further improvement in prediction performance. In addition, effective interpretation of deep-learning models is greatly desirable. Here we present MAResNet, a new deep-learning method, for predicting transcription factor binding sites on 690 ChIP-seq datasets. More specifically, MAResNet combines the bottom-up and top-down attention mechanisms and a state-of-the-art feed-forward network (ResNet), which is constructed by stacking attention modules that generate attention-aware features. In particular, the multi-scale attention mechanism is utilized at the first stage to extract rich and representative sequence features. We further discuss the attention-aware features learned from different attention modules in accordance with the changes as the layers go deeper. The features learned by MAResNet are also visualized through the TMAP tool to illustrate that the method can extract the unique characteristics of transcription factor binding sites. The performance of MAResNet is extensively tested on 690 test subsets with an average AUC of 0.927, which is higher than that of the current state-of-the-art methods. Overall, this study provides a new and useful framework for the prediction of transcription factor binding sites by combining the funnel attention modules with the residual network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JJBOND完成签到,获得积分10
刚刚
NexusExplorer应助梁大海采纳,获得10
刚刚
科研韭菜完成签到 ,获得积分10
刚刚
往昔完成签到,获得积分10
1秒前
叩白关注了科研通微信公众号
1秒前
李爱国应助小尾羊采纳,获得20
1秒前
沉静寄云发布了新的文献求助10
1秒前
zhumengyu完成签到,获得积分10
2秒前
黎黎完成签到,获得积分10
2秒前
月月呀完成签到,获得积分10
2秒前
2秒前
倩倩发布了新的文献求助10
2秒前
JIA发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
睡不醒就来上班完成签到,获得积分10
5秒前
5秒前
喜宝完成签到 ,获得积分10
5秒前
顾己完成签到,获得积分10
5秒前
5秒前
lh完成签到,获得积分10
6秒前
从容芮应助123采纳,获得20
7秒前
自由人完成签到,获得积分10
7秒前
wongcheng完成签到,获得积分10
7秒前
7秒前
布丁完成签到,获得积分10
8秒前
lee完成签到,获得积分20
9秒前
9秒前
10秒前
大兵发布了新的文献求助10
10秒前
努力看文献的卑微打工人完成签到,获得积分10
11秒前
可爱的函函应助zzzzzz采纳,获得10
11秒前
洛苏完成签到,获得积分10
12秒前
Greed-red完成签到,获得积分10
12秒前
chenren完成签到,获得积分10
13秒前
梧寂发布了新的文献求助10
14秒前
Dominic7888完成签到,获得积分10
14秒前
luna完成签到,获得积分10
15秒前
唐亚婷发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150928
求助须知:如何正确求助?哪些是违规求助? 2802473
关于积分的说明 7847995
捐赠科研通 2459756
什么是DOI,文献DOI怎么找? 1309327
科研通“疑难数据库(出版商)”最低求助积分说明 628891
版权声明 601757