Co-VAE: Drug-Target Binding Affinity Prediction by Co-Regularized Variational Autoencoders

药物靶点 药品 人工智能 计算机科学 结合亲和力 药物发现 亲缘关系 正规化(语言学) 机器学习 理论(学习稳定性) 模式识别(心理学) 化学 立体化学 生物 药理学 受体 生物化学
作者
Tianjiao Li,Xing‐Ming Zhao,Limin Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:44 (12): 8861-8873 被引量:28
标识
DOI:10.1109/tpami.2021.3120428
摘要

Identifying drug-target interactions has been a key step in drug discovery. Many computational methods have been proposed to directly determine whether drugs and targets can interact or not. Drug-target binding affinity is another type of data which could show the strength of the binding interaction between a drug and a target. However, it is more challenging to predict drug-target binding affinity, and thus a very few studies follow this line. In our work, we propose a novel co-regularized variational autoencoders (Co-VAE) to predict drug-target binding affinity based on drug structures and target sequences. The Co-VAE model consists of two VAEs for generating drug SMILES strings and target sequences, respectively, and a co-regularization part for generating the binding affinities. We theoretically prove that the Co-VAE model is to maximize the lower bound of the joint likelihood of drug, protein and their affinity. The Co-VAE could predict drug-target affinity and generate new drugs which share similar targets with the input drugs. The experimental results on two datasets show that the Co-VAE could predict drug-target affinity better than existing affinity prediction methods such as DeepDTA and DeepAffinity, and could generate more new valid drugs than existing methods such as GAN and VAE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wilsonht发布了新的文献求助60
1秒前
1秒前
luqian发布了新的文献求助10
1秒前
1秒前
难摧发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
领导范儿应助奋斗的怀曼采纳,获得10
4秒前
逸群发布了新的文献求助10
5秒前
5秒前
6秒前
彭于晏应助漂亮的素采纳,获得10
6秒前
LiangRen发布了新的文献求助10
6秒前
7秒前
英姑应助啊哦嘿采纳,获得10
8秒前
万有引力发布了新的文献求助10
8秒前
完美世界应助阳地黄采纳,获得10
8秒前
9秒前
优雅灵波发布了新的文献求助50
9秒前
奥利奥完成签到 ,获得积分20
9秒前
秋雨安完成签到,获得积分10
10秒前
在水一方应助jindou采纳,获得10
10秒前
xxx发布了新的文献求助10
11秒前
proteinpurify发布了新的文献求助30
11秒前
12秒前
cccccccccc完成签到 ,获得积分10
12秒前
Jinyi完成签到,获得积分10
12秒前
balala完成签到 ,获得积分10
13秒前
13秒前
小郭完成签到,获得积分10
14秒前
darkpigx完成签到,获得积分10
14秒前
14秒前
same完成签到,获得积分10
15秒前
15秒前
16秒前
CodeCraft应助duonicola采纳,获得10
16秒前
hitagi发布了新的文献求助10
17秒前
17秒前
17秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291