Coastline Extraction from GF-3 SAR Images Using LKDACM and GMM Algorithms

活动轮廓模型 合成孔径雷达 人工智能 计算机科学 混合模型 模式识别(心理学) 职位(财务) 分割 高斯分布 计算机视觉 图像分割 算法 物理 财务 量子力学 经济
作者
Dongsheng Liu,Ling Han
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:36 (01) 被引量:1
标识
DOI:10.1142/s0218001422540015
摘要

Coastline detection using a Gaussian Mixture Model (GMM) applied to synthetic aperture radar (SAR) imagery is usually inaccurate due to the inherent noise of SAR data. In addition, the traditional active counter model is sensitive to the initial position of the contour line and requires a large number of iterations to converge to a solution. In this study, we first used the GMM algorithm to segment the SAR images and obtain a coarse land and sea segmentation map. This map is then used as the initial position for a subsequent active contour model. The K distribution was introduced into the local statistical active contour model to better model the SAR image. The Gaussian distribution-based local active contour model and the algorithm detailed in this paper were used to perform coastline extraction experiments on four SAR images. Four GF-3 SAR images with different modes were collected to validate the efficiency of the proposed method. The experimental results show that the coastline extraction methods from SAR images based on the GMM algorithm and the K distribution-based local statistical active contour model (LKDACM) overcame the shortcomings of the traditional active contour model to accurately and quickly detect coastlines, thus enabling the detection of coastline changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈丞澄发布了新的文献求助10
刚刚
蓦然发布了新的文献求助10
3秒前
3秒前
YCG完成签到 ,获得积分10
4秒前
竹筏过海应助淡然天问采纳,获得30
4秒前
浮游应助淡然天问采纳,获得10
4秒前
领导范儿应助柔弱的冬天采纳,获得30
5秒前
落后翠柏发布了新的文献求助10
6秒前
不安的成协完成签到,获得积分10
7秒前
7秒前
8秒前
长情听南发布了新的文献求助10
9秒前
锦慜发布了新的文献求助10
9秒前
顾矜应助蓦然采纳,获得10
10秒前
可爱的函函应助panda采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
李昕123发布了新的文献求助10
11秒前
11秒前
吧唧完成签到,获得积分10
12秒前
123456完成签到,获得积分10
13秒前
大模型应助wjy321采纳,获得10
13秒前
云漫山发布了新的文献求助10
13秒前
Ruby应助jsss采纳,获得10
14秒前
14秒前
15秒前
wise111发布了新的文献求助30
15秒前
尊敬的小凡完成签到,获得积分10
15秒前
xbx1991发布了新的文献求助30
15秒前
充电宝应助阿良采纳,获得10
17秒前
自信大白菜真实的钥匙完成签到,获得积分10
17秒前
wyh应助活泼溪流采纳,获得30
17秒前
李昕123完成签到,获得积分10
18秒前
18秒前
刺五加完成签到 ,获得积分10
19秒前
852应助Eom采纳,获得10
19秒前
20秒前
20秒前
caoyuya123完成签到 ,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704