Energy generation from airborne noise: Improving electrical outputs of single-layer polyvinylidene difluoride nanofiber membranes by incorporating a small number of nylon-6 nanofibers

材料科学 纳米纤维 纳米发生器 静电纺丝 掺杂剂 聚偏氟乙烯 电极 光电子学 能量收集 驻极体 复合材料 聚合物 压电 纳米技术 兴奋剂 功率(物理) 化学 物理 物理化学 量子力学
作者
Haitao Niu,Hua Zhou,Hao Shao,Hongxia Wang,Xiang Ding,Ruixi Bai,Tong Lin
出处
期刊:Nano Energy [Elsevier]
卷期号:90: 106618-106618 被引量:19
标识
DOI:10.1016/j.nanoen.2021.106618
摘要

Considerable research has been devoted to generating electricity from airborne noise. However, it is still a challenge to develop high-efficiency, large-output energy harvesters for this purpose. Herein, we present a novel approach to improve the electrical output of a noise-related energy harvester, made of single-layer polyvinylidene difluoride (PVDF) nanofiber membrane, simply by incorporating a small number of nylon-6 nanofibers into the PVDF fibrous matrix. The addition of just 4.3 wt% nylon-6 nanofibers profoundly improves the acoustoelectric conversion. In an airborne noise environment (e.g., 230 Hz 118 dB SPL), the device (working area 12 cm2) can generate peak electrical outputs as high as 201.4 V and 17.6 µA (power density 1.30 W/m2). The voltage and current outputs are 2.7 times and 2.6 times higher, respectively, compared to the pure PVDF nanofiber counterpart. The nylon-6/PVDF device also showed broader bandwidth, covering a frequency range of 230–800 Hz. The nylon-6 nanofibers were found to play dual roles in noise harvesting: 1) a tribo component to cause an endogenous triboelectric effect with PVDF nanofibers, and 2) a dopant to form macro dipoles, thus improving the charge transport from a dielectric layer to the external electrodes, which significantly increases the electrical outputs. Incorporating high polarity dopant may form a novel approach to improve the electrical outputs of acoustoelectric nanofibers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落寞白曼完成签到,获得积分10
刚刚
刚刚
海鸥海鸥发布了新的文献求助10
1秒前
别让我误会完成签到 ,获得积分10
2秒前
2秒前
KK发布了新的文献求助30
2秒前
娃娃完成签到 ,获得积分20
2秒前
科研通AI5应助结实的冰真采纳,获得30
2秒前
冷静的小熊猫完成签到,获得积分10
3秒前
Donnie完成签到,获得积分10
3秒前
若尘完成签到,获得积分10
4秒前
椰子完成签到 ,获得积分10
4秒前
4秒前
细腻涵菱完成签到,获得积分10
5秒前
吕耀炜完成签到,获得积分10
5秒前
5秒前
5秒前
简称王完成签到 ,获得积分10
5秒前
蓝莓松饼完成签到,获得积分10
6秒前
一路高飛完成签到,获得积分10
6秒前
赘婿应助andyxrz采纳,获得10
6秒前
Zhang完成签到,获得积分10
6秒前
7秒前
年轻冥茗完成签到,获得积分10
7秒前
apple发布了新的文献求助10
8秒前
CarterXD完成签到,获得积分10
8秒前
紧张的友灵完成签到,获得积分10
8秒前
SciGPT应助之仔饼采纳,获得10
9秒前
liudiqiu应助追寻的易烟采纳,获得10
9秒前
Chem is try发布了新的文献求助10
9秒前
9秒前
vsoar完成签到,获得积分10
9秒前
10秒前
11秒前
GGGGGGGGGG发布了新的文献求助10
11秒前
11秒前
打打应助hhh采纳,获得10
12秒前
抓恐龙关注了科研通微信公众号
12秒前
碳点godfather完成签到,获得积分10
12秒前
ren完成签到,获得积分20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672