亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A five-dimensional data collection strategy for multicomponent discovery and characterization in Traditional Chinese Medicine: Gastrodia Rhizoma as a case study

化学 质谱法 色谱法 亲水作用色谱法 离子迁移光谱法 代谢组学 代谢物 基质(化学分析) 高效液相色谱法 生物化学
作者
Haodong Zhu,Xingdong Wu,Jiangyan Huo,Jinjun Hou,Huali Long,Zhibin Zhang,Bing Wang,Menghua Tian,Kaixian Chen,De‐an Guo,Min Lei,Wanying Wu
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1653: 462405-462405 被引量:21
标识
DOI:10.1016/j.chroma.2021.462405
摘要

Establishing the identity of bioactive compounds to control the quality of Traditional Chinese Medicines is made more challenging by the complexity of the metabolite matrix, the existence of isomers, and the range of compound concentration and polarity observed between individual samples of the same plant in a multicomponent preparation. In addition, LC-MS analysis has limited capability for the separation and analysis of potentially important trace compounds and isomers, which hinders the comprehensive metabolite characterization of functional foods and Traditional Natural Medicine. To facilitate and improve the chemical composition characterization and enhance metabolite discernment, a comprehensive strategy was developed which integrates ion mobility mass spectrometry (IMS) with offline two-dimensional liquid chromatography based on hydrophilic interaction chromatography (HILIC) and conventional reversed phase (RP) C18 chromatography. Through application of the HILIC × RP offline 2D-LC approach, trace compounds were enriched and separated promoting a more efficient and detailed analysis of the matrix complexity. Comprehensive non-targeted multidimensional data (Rt1D, Rt2D, MS, CCS and MS/MS) and data-independent-acquisition (DIA) mass data of the metabolites in complex food and drug samples were obtained in the IMS-DIA-MS/MS mode on a Waters-SYNAPT G2-Si mass spectrometer with an ESI source. Through the application of high-efficiency neutral loss (NLs) and diagnostic product ions (DPIs) filter strategies, information from DIA mass data permitted the rapid detection and identification of compounds. The identification coverage of metabolites with low-quality MS/MS data was also improved. In the absence of analytical standards, Collision Cross Section (CCS) prediction and matching strategies based on theoretical chemical structures provided a method to distingish isomers. To demonstrate the efficacy of the technique this comprehensive strategy was applied to the compound characterization of Gastrodia Rhizoma (GR). Characterization of 272 compounds was achieved, including 146 unreported compounds. The results affirm that this comprehensive five-dimensional data collection strategy has the capacity to support the in-depth study of the high level of chemical diversity in Traditional Chinese Medicines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shl完成签到,获得积分10
2秒前
shl发布了新的文献求助10
5秒前
Nanqi完成签到 ,获得积分10
6秒前
独徙完成签到 ,获得积分10
9秒前
欣喜的人龙完成签到 ,获得积分10
14秒前
笨笨的怜雪完成签到 ,获得积分10
28秒前
rainbow完成签到 ,获得积分0
32秒前
Magali应助Zooey旎旎采纳,获得20
33秒前
FashionBoy应助梦华老师采纳,获得10
34秒前
怕黑行恶完成签到,获得积分10
36秒前
小二郎应助科研通管家采纳,获得10
42秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
慕青应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
42秒前
完美世界应助seven采纳,获得10
44秒前
50秒前
54秒前
龙哥哥Antony完成签到,获得积分10
1分钟前
隐形曼青应助沉默的早晨采纳,获得10
1分钟前
大媛媛完成签到,获得积分10
1分钟前
1分钟前
supermaltose完成签到,获得积分10
1分钟前
1分钟前
柏白筠发布了新的文献求助10
1分钟前
沉默的早晨完成签到,获得积分10
1分钟前
震动的修洁完成签到 ,获得积分10
1分钟前
1分钟前
酷酷问夏完成签到 ,获得积分10
1分钟前
1分钟前
瘦瘦仙人掌完成签到,获得积分20
1分钟前
孙远欣发布了新的文献求助10
1分钟前
1分钟前
人类不宜飞行完成签到 ,获得积分10
1分钟前
阳光问安完成签到 ,获得积分10
1分钟前
Hello应助瘦瘦仙人掌采纳,获得10
1分钟前
1分钟前
seven发布了新的文献求助10
1分钟前
Jasper应助穿裤子的云采纳,获得50
1分钟前
SciGPT应助梦华老师采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544380
求助须知:如何正确求助?哪些是违规求助? 3121574
关于积分的说明 9347880
捐赠科研通 2819813
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722559
科研通“疑难数据库(出版商)”最低求助积分说明 713273