Explainable deep learning predictions for illness risk of mental disorders in Nanjing, China

恶化 环境流行病学 污染物 环境卫生 空气污染 流行病学 心理健康 中国 人口 医学 人口学 环境科学 精神科 地理 化学 内科学 有机化学 考古 社会学
作者
Ce Wang,Feng Lan,一朗 漆崎
出处
期刊:Environmental Research [Elsevier BV]
卷期号:202: 111740-111740 被引量:30
标识
DOI:10.1016/j.envres.2021.111740
摘要

Epidemiological studies have revealed the associations of air pollutants and meteorological factors with a range of mental health conditions. However, little is known about local explanations and global understanding on the importance and effect of input features in the complex system of environmental stressors - mental disorders (MDs), especially for exposure to air pollution mixture. In this study, we combined deep learning neural networks (DLNNs) with SHapley Additive exPlanation (SHAP) to predict the illness risk of MDs on the population level, and then provided explanations for risk factors. The modeling system, which was trained on day-by-day hospital outpatient visits of two major hospitals in Nanjing, China from 2013/07/01 through 2019/02/28, visualized the time-varying prediction, contributing factors, and interaction effects of informative features. Our results suggested that NO2, SO2, and CO made outstanding contributions in magnitude of feature attributions under circumstances of mixed air pollutants. In particular, NO2 at high concentration level was associated with an increase in illness risk of MDs, and the maximum and mean absolute SHAP value were approximated to 10 and 2 as a local and global measure of feature importance, respectively. It presented a marginally antagonistic effect for two pairs of gaseous pollutants, i.e., NO2 vs. SO2 and CO vs. NO2. In contrast, CO and SO2 displayed the opposite direction of feature effects to the rise of observed concentrations, but an apparent synergistic effect was obviously captured. The primary risk factors driving a sharp increase in acute attack or exacerbation of MDs were also identified by depicting prediction paths of time-series samples. We believe that the significance of coupling accurate predictions from DLNNs with interpretable explanations of why a prediction is completed has broad applicability throughout the field of environmental health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉凉应助jay007采纳,获得30
1秒前
量子星尘发布了新的文献求助10
1秒前
虾虾关注了科研通微信公众号
1秒前
可爱飞荷发布了新的文献求助30
2秒前
小九九完成签到 ,获得积分10
4秒前
虞丹萱发布了新的文献求助10
4秒前
csr完成签到,获得积分20
5秒前
糊涂涂发布了新的文献求助10
7秒前
有机化学发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
15秒前
毕个业完成签到 ,获得积分10
16秒前
17秒前
18秒前
贰鸟应助fly采纳,获得10
18秒前
lixiang发布了新的文献求助10
18秒前
18秒前
20秒前
Kohiru完成签到,获得积分10
20秒前
22秒前
宁宁发布了新的文献求助10
22秒前
pipi发布了新的文献求助10
22秒前
22秒前
yusuf发布了新的文献求助10
23秒前
24秒前
JamesPei应助虞丹萱采纳,获得10
24秒前
缓缓矛盾体完成签到,获得积分10
26秒前
abaaba完成签到,获得积分10
26秒前
完美世界应助好好好采纳,获得10
27秒前
简单发布了新的文献求助10
27秒前
臭学医的发布了新的文献求助30
28秒前
任性访风完成签到,获得积分10
29秒前
29秒前
30秒前
小马甲应助房房房采纳,获得10
31秒前
闪闪小小完成签到 ,获得积分10
32秒前
32秒前
111111完成签到,获得积分10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010774
求助须知:如何正确求助?哪些是违规求助? 3550436
关于积分的说明 11305765
捐赠科研通 3284800
什么是DOI,文献DOI怎么找? 1810853
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811499