Explainable deep learning predictions for illness risk of mental disorders in Nanjing, China

恶化 环境流行病学 污染物 环境卫生 空气污染 流行病学 心理健康 中国 人口 医学 人口学 环境科学 精神科 地理 化学 内科学 考古 有机化学 社会学
作者
Ce Wang,Lan Feng,一朗 漆崎
出处
期刊:Environmental Research [Elsevier]
卷期号:202: 111740-111740 被引量:24
标识
DOI:10.1016/j.envres.2021.111740
摘要

Epidemiological studies have revealed the associations of air pollutants and meteorological factors with a range of mental health conditions. However, little is known about local explanations and global understanding on the importance and effect of input features in the complex system of environmental stressors - mental disorders (MDs), especially for exposure to air pollution mixture. In this study, we combined deep learning neural networks (DLNNs) with SHapley Additive exPlanation (SHAP) to predict the illness risk of MDs on the population level, and then provided explanations for risk factors. The modeling system, which was trained on day-by-day hospital outpatient visits of two major hospitals in Nanjing, China from 2013/07/01 through 2019/02/28, visualized the time-varying prediction, contributing factors, and interaction effects of informative features. Our results suggested that NO2, SO2, and CO made outstanding contributions in magnitude of feature attributions under circumstances of mixed air pollutants. In particular, NO2 at high concentration level was associated with an increase in illness risk of MDs, and the maximum and mean absolute SHAP value were approximated to 10 and 2 as a local and global measure of feature importance, respectively. It presented a marginally antagonistic effect for two pairs of gaseous pollutants, i.e., NO2 vs. SO2 and CO vs. NO2. In contrast, CO and SO2 displayed the opposite direction of feature effects to the rise of observed concentrations, but an apparent synergistic effect was obviously captured. The primary risk factors driving a sharp increase in acute attack or exacerbation of MDs were also identified by depicting prediction paths of time-series samples. We believe that the significance of coupling accurate predictions from DLNNs with interpretable explanations of why a prediction is completed has broad applicability throughout the field of environmental health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨凡之发布了新的文献求助10
刚刚
FashionBoy应助超帅的水壶采纳,获得10
1秒前
汉堡包应助认真的果汁采纳,获得40
2秒前
小鱼儿完成签到,获得积分10
2秒前
2秒前
3秒前
可爱的函函应助一一六采纳,获得10
3秒前
3秒前
weikang发布了新的文献求助10
4秒前
领导范儿应助AXXXin采纳,获得10
4秒前
WG应助111采纳,获得10
5秒前
小巧语雪完成签到,获得积分20
6秒前
6秒前
6秒前
英勇的幻露完成签到,获得积分10
7秒前
yes完成签到 ,获得积分10
8秒前
9秒前
000发布了新的文献求助10
9秒前
10秒前
10秒前
领导范儿应助宇宙的中心采纳,获得10
11秒前
yao完成签到,获得积分10
11秒前
大意的悟空完成签到,获得积分10
12秒前
万疾发布了新的文献求助50
12秒前
13秒前
腼腆的缘分完成签到,获得积分10
13秒前
14秒前
1781266发布了新的文献求助10
15秒前
小二郎应助科研小奶狗采纳,获得10
15秒前
15秒前
bkagyin应助surain采纳,获得10
15秒前
淼淼完成签到 ,获得积分10
15秒前
喜之郎完成签到,获得积分10
16秒前
17秒前
Yuuuu完成签到 ,获得积分10
17秒前
Bazinga发布了新的文献求助30
18秒前
爱听歌的寄云完成签到 ,获得积分10
18秒前
18秒前
zqq发布了新的文献求助10
19秒前
今后应助zzzzzzzz采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135702
求助须知:如何正确求助?哪些是违规求助? 2786585
关于积分的说明 7778267
捐赠科研通 2442686
什么是DOI,文献DOI怎么找? 1298616
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866