Deep-learning and MR images to target hypoxic habitats with evofosfamide in preclinical models of sarcoma

缺氧(环境) 横纹肌肉瘤 医学 放射治疗 纤维肉瘤 阿霉素 肉瘤 癌症研究 磁共振成像 软组织肉瘤 病理 核医学 化疗 内科学 化学 放射科 氧气 有机化学
作者
Bruna V. Jardim‐Perassi,Wei Mu,Su‐Ning Huang,Michal R. Tomaszewski,Jan Poleszczuk,Mahmoud A. Abdalah,Mikalai M. Budzevich,William Dominguez‐Viqueira,Damon R. Reed,Marilyn M. Bui,Joseph Johnson,Gary V. Martinez,Robert J. Gillies
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:11 (11): 5313-5329 被引量:14
标识
DOI:10.7150/thno.56595
摘要

Rationale: Hypoxic regions (habitats) within tumors are heterogeneously distributed and can be widely variant. Hypoxic habitats are generally pan-therapy resistant. For this reason, hypoxia-activated prodrugs (HAPs) have been developed to target these resistant volumes. The HAP evofosfamide (TH-302) has shown promise in preclinical and early clinical trials of sarcoma. However, in a phase III clinical trial of non-resectable soft tissue sarcomas, TH-302 did not improve survival in combination with doxorubicin (Dox), possibly due to a lack of patient stratification based on hypoxic status. Therefore, we used magnetic resonance imaging (MRI) to identify hypoxic habitats and non-invasively follow therapies response in sarcoma mouse models. Methods: We developed deep-learning (DL) models to identify hypoxia, using multiparametric MRI and co-registered histology, and monitored response to TH-302 in a patient-derived xenograft (PDX) of rhabdomyosarcoma and a syngeneic model of fibrosarcoma (radiation-induced fibrosarcoma, RIF-1). Results: A DL convolutional neural network showed strong correlations (>0.76) between the true hypoxia fraction in histology and the predicted hypoxia fraction in multiparametric MRI. TH-302 monotherapy or in combination with Dox delayed tumor growth and increased survival in the hypoxic PDX model (p<0.05), but not in the RIF-1 model, which had a lower volume of hypoxic habitats. Control studies showed that RIF-1 resistance was due to hypoxia and not other causes. Notably, PDX tumors developed resistance to TH-302 under prolonged treatment that was not due to a reduction in hypoxic volumes. Conclusion: Artificial intelligence analysis of pre-therapy MR images can predict hypoxia and subsequent response to HAPs. This approach can be used to monitor therapy response and adapt schedules to forestall the emergence of resistance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
小蘑菇应助聪慧的正豪采纳,获得10
1秒前
朱佳宁完成签到 ,获得积分10
1秒前
车宇完成签到 ,获得积分10
1秒前
苯环超人完成签到,获得积分10
2秒前
led完成签到,获得积分0
2秒前
4秒前
一叶扁舟0147完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
英勇的红酒完成签到 ,获得积分10
10秒前
10秒前
炙热尔烟完成签到,获得积分10
12秒前
哇哒西蛙完成签到,获得积分20
12秒前
尚秋月完成签到,获得积分10
12秒前
14秒前
14秒前
顺心的芝麻完成签到 ,获得积分10
15秒前
Dharma_Bums发布了新的文献求助10
16秒前
科研通AI2S应助ironsilica采纳,获得10
17秒前
17秒前
SSY完成签到,获得积分10
18秒前
LongHua发布了新的文献求助10
22秒前
缪道之完成签到 ,获得积分10
22秒前
23秒前
木偶完成签到,获得积分10
23秒前
小猫完成签到 ,获得积分10
23秒前
huayi完成签到,获得积分10
25秒前
典雅胜发布了新的文献求助10
26秒前
姚怜南完成签到,获得积分10
26秒前
Norah完成签到,获得积分10
27秒前
27秒前
饱满的毛巾完成签到,获得积分10
28秒前
玖月完成签到 ,获得积分0
29秒前
29秒前
30秒前
潇潇完成签到,获得积分10
31秒前
pluto完成签到,获得积分0
31秒前
33秒前
支雨泽发布了新的文献求助10
34秒前
烟花应助TulIP采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688574
关于积分的说明 14854759
捐赠科研通 4693983
什么是DOI,文献DOI怎么找? 2540888
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806