Deep-learning and MR images to target hypoxic habitats with evofosfamide in preclinical models of sarcoma

缺氧(环境) 横纹肌肉瘤 医学 放射治疗 纤维肉瘤 阿霉素 肉瘤 癌症研究 磁共振成像 软组织肉瘤 病理 核医学 化疗 内科学 化学 放射科 氧气 有机化学
作者
Bruna V. Jardim‐Perassi,Wei Mu,Su‐Ning Huang,Michal R. Tomaszewski,Jan Poleszczuk,Mahmoud A. Abdalah,Mikalai M. Budzevich,William Dominguez‐Viqueira,Damon R. Reed,Marilyn M. Bui,Joseph Johnson,Gary V. Martinez,Robert J. Gillies
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:11 (11): 5313-5329 被引量:14
标识
DOI:10.7150/thno.56595
摘要

Rationale: Hypoxic regions (habitats) within tumors are heterogeneously distributed and can be widely variant. Hypoxic habitats are generally pan-therapy resistant. For this reason, hypoxia-activated prodrugs (HAPs) have been developed to target these resistant volumes. The HAP evofosfamide (TH-302) has shown promise in preclinical and early clinical trials of sarcoma. However, in a phase III clinical trial of non-resectable soft tissue sarcomas, TH-302 did not improve survival in combination with doxorubicin (Dox), possibly due to a lack of patient stratification based on hypoxic status. Therefore, we used magnetic resonance imaging (MRI) to identify hypoxic habitats and non-invasively follow therapies response in sarcoma mouse models. Methods: We developed deep-learning (DL) models to identify hypoxia, using multiparametric MRI and co-registered histology, and monitored response to TH-302 in a patient-derived xenograft (PDX) of rhabdomyosarcoma and a syngeneic model of fibrosarcoma (radiation-induced fibrosarcoma, RIF-1). Results: A DL convolutional neural network showed strong correlations (>0.76) between the true hypoxia fraction in histology and the predicted hypoxia fraction in multiparametric MRI. TH-302 monotherapy or in combination with Dox delayed tumor growth and increased survival in the hypoxic PDX model (p<0.05), but not in the RIF-1 model, which had a lower volume of hypoxic habitats. Control studies showed that RIF-1 resistance was due to hypoxia and not other causes. Notably, PDX tumors developed resistance to TH-302 under prolonged treatment that was not due to a reduction in hypoxic volumes. Conclusion: Artificial intelligence analysis of pre-therapy MR images can predict hypoxia and subsequent response to HAPs. This approach can be used to monitor therapy response and adapt schedules to forestall the emergence of resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiao举报宛海求助涉嫌违规
刚刚
感谢leigod转发科研通微信,获得积分50
1秒前
yuyu发布了新的文献求助10
1秒前
和谐晓啸发布了新的文献求助10
1秒前
1秒前
小二郎应助yongkun采纳,获得10
1秒前
搜集达人应助调皮的安阳采纳,获得10
1秒前
1秒前
汉堡包应助zodiac采纳,获得10
2秒前
没药完成签到,获得积分10
2秒前
黑妖发布了新的文献求助10
2秒前
3秒前
3秒前
SYLH应助马听云采纳,获得10
3秒前
FashionBoy应助wangjue采纳,获得10
5秒前
5秒前
5秒前
温超发布了新的文献求助20
5秒前
6秒前
和谐烨霖完成签到,获得积分10
6秒前
lilongcheng发布了新的文献求助10
7秒前
hhh发布了新的文献求助10
9秒前
anneke_完成签到,获得积分10
9秒前
Fan_完成签到,获得积分20
10秒前
10秒前
桐桐应助Mine采纳,获得10
10秒前
ly发布了新的文献求助10
10秒前
打打应助温超采纳,获得10
11秒前
jiojio完成签到,获得积分10
12秒前
刘爽完成签到,获得积分10
12秒前
12秒前
传奇3应助lee采纳,获得10
13秒前
Ethan发布了新的文献求助20
13秒前
ALONE发布了新的文献求助10
15秒前
在水一方应助笑尽往事采纳,获得10
16秒前
lilongcheng完成签到,获得积分10
16秒前
16秒前
16秒前
酷波er应助怎么会这样呢采纳,获得10
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951271
求助须知:如何正确求助?哪些是违规求助? 3496677
关于积分的说明 11083785
捐赠科研通 3227103
什么是DOI,文献DOI怎么找? 1784263
邀请新用户注册赠送积分活动 868293
科研通“疑难数据库(出版商)”最低求助积分说明 801102