Deep-learning and MR images to target hypoxic habitats with evofosfamide in preclinical models of sarcoma

缺氧(环境) 横纹肌肉瘤 医学 放射治疗 纤维肉瘤 阿霉素 肉瘤 癌症研究 磁共振成像 软组织肉瘤 病理 核医学 化疗 内科学 化学 放射科 氧气 有机化学
作者
Bruna V. Jardim‐Perassi,Wei Mu,Su‐Ning Huang,Michal R. Tomaszewski,Jan Poleszczuk,Mahmoud A. Abdalah,Mikalai M. Budzevich,William Dominguez‐Viqueira,Damon R. Reed,Marilyn M. Bui,Joseph Johnson,Gary V. Martinez,Robert J. Gillies
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:11 (11): 5313-5329 被引量:14
标识
DOI:10.7150/thno.56595
摘要

Rationale: Hypoxic regions (habitats) within tumors are heterogeneously distributed and can be widely variant. Hypoxic habitats are generally pan-therapy resistant. For this reason, hypoxia-activated prodrugs (HAPs) have been developed to target these resistant volumes. The HAP evofosfamide (TH-302) has shown promise in preclinical and early clinical trials of sarcoma. However, in a phase III clinical trial of non-resectable soft tissue sarcomas, TH-302 did not improve survival in combination with doxorubicin (Dox), possibly due to a lack of patient stratification based on hypoxic status. Therefore, we used magnetic resonance imaging (MRI) to identify hypoxic habitats and non-invasively follow therapies response in sarcoma mouse models. Methods: We developed deep-learning (DL) models to identify hypoxia, using multiparametric MRI and co-registered histology, and monitored response to TH-302 in a patient-derived xenograft (PDX) of rhabdomyosarcoma and a syngeneic model of fibrosarcoma (radiation-induced fibrosarcoma, RIF-1). Results: A DL convolutional neural network showed strong correlations (>0.76) between the true hypoxia fraction in histology and the predicted hypoxia fraction in multiparametric MRI. TH-302 monotherapy or in combination with Dox delayed tumor growth and increased survival in the hypoxic PDX model (p<0.05), but not in the RIF-1 model, which had a lower volume of hypoxic habitats. Control studies showed that RIF-1 resistance was due to hypoxia and not other causes. Notably, PDX tumors developed resistance to TH-302 under prolonged treatment that was not due to a reduction in hypoxic volumes. Conclusion: Artificial intelligence analysis of pre-therapy MR images can predict hypoxia and subsequent response to HAPs. This approach can be used to monitor therapy response and adapt schedules to forestall the emergence of resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶梓发布了新的文献求助10
刚刚
jy发布了新的文献求助10
刚刚
1秒前
1秒前
桐桐完成签到,获得积分0
1秒前
复杂天真应助iuhgnor采纳,获得10
2秒前
科研通AI5应助SCI采纳,获得10
2秒前
彭于晏应助灵巧荆采纳,获得10
2秒前
JamesPei应助Rrr采纳,获得10
3秒前
小蝴蝶完成签到 ,获得积分10
3秒前
赤邪发布了新的文献求助10
4秒前
dingdong发布了新的文献求助10
4秒前
爆米花应助phil采纳,获得10
5秒前
科研通AI5应助wang采纳,获得10
5秒前
6秒前
6秒前
Wxx发布了新的文献求助10
6秒前
兜兜完成签到,获得积分10
7秒前
dingdong发布了新的文献求助10
7秒前
7秒前
yuan发布了新的文献求助20
8秒前
HUAJIAO完成签到,获得积分10
8秒前
街舞腹肌修道帅哥完成签到,获得积分10
8秒前
zhangyulu完成签到 ,获得积分10
9秒前
9秒前
独特不斜完成签到,获得积分10
9秒前
海底落日发布了新的文献求助30
9秒前
共享精神应助紧张的妖妖采纳,获得10
9秒前
耶耶粘豆包完成签到 ,获得积分10
10秒前
dingdong发布了新的文献求助10
11秒前
xunxunmimi发布了新的文献求助50
11秒前
Z小姐发布了新的文献求助10
11秒前
幽壑之潜蛟应助123采纳,获得10
12秒前
是天使呢发布了新的文献求助10
12秒前
12秒前
研友_VZG7GZ应助坨坨西州采纳,获得10
13秒前
13秒前
华华完成签到,获得积分10
13秒前
刘明发布了新的文献求助10
13秒前
1604531786发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794